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1 Reinsurance treaties

Let X be the (aggregate) loss or claim for an insurer in a fixed

time period. We assume that X is a non-negative random variable

with distribution function F (x) = Pr{X ≤ x}, survival function S(x) =

1−F (x) = Pr{X > x}, mean EX = µ > 0, and variance VarX = σ2 > 0.

Under a reinsurance treaty, a reinsurer will cover the part of the loss,

say f(X) with 0 ≤ f(X) ≤ X, and the insurer will retain the rest of the

loss, which is denoted by If(X) = X − f(X), where the function f(x),

satisfying 0 ≤ f(x) ≤ x, is known as a ceded loss function and the function

If(x) = x − f(x) is called a retained loss function. The losses f(X) and

If(X) are called ceded loss and retained loss, respectively.
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Under the reinsurance contract f , we denote the reinsurance premium

by P fR. Thus, the net insurance premium received by the insurer is

P fI = P0 − P fR, where P0 is the insurance premium received by the insurer

from an insured. Therefore, under the reinsurance treaty f , the insurer

and reinsurer share both the insurance loss X = If(X) + f(X) and the

insurance premium P0 = P fI + P fR.

Mathematically, an optimal reinsurance is a specified form of the ceded

loss f(X), which satisfies a certain optimization criterion. Optimal forms

of reinsurance depend on optimization criteria and reinsurance premium

principles. Several optimization criteria commonly used in the study of

optimal reinsurance are

• maximizing the expected utility function of a company’s wealth;

• minimizing the variance of a company’s risk;

2



• minimizing the risk measures of a company’s risk;

• and minimizing the ruin probability or equivalently maximizing the

survival probability of a company.

Most existing results on optimal reinsurance are from an insurer’s point

of view.

Arrow (1963) showed that when the optimization criterion is to maximize

the expected concave utility function of an insurer’s wealth with a given

expected ceded loss, the optimal reinsurance for an insurer is a stop-loss

reinsurance.

It is well-known that the optimal reinsurance for an insurer, which

minimizes the variance of the insurer’s loss with a given expected ceded

loss, is also a stop-loss reinsurance.
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However, Vajda (1962) showed that the optimal reinsurance for a

reinsurer, which minimizes the variance of the reinsurer’s loss with a fixed

net reinsurance premium, is a quota-share reinsurance among a class of

ceded loss functions that include stop-loss reinsurance contracts.

Kaluszka and Okolewski (2008) showed that if an insurer wants to

maximize his expected utility with the maximal possible claim premium

principle, the optimal form of reinsurance for the insurer is a limited stop-

loss reinsurance.

Cai, et al. (2008) proved that depending on the risk measures level

of confidence, the optimal reinsurance for an insurer, which minimizes the

value-at-risk (VaR) and the conditional tail expectation (CTE) of the total

risk of the insurer, can be in the forms of a stop-loss reinsurance or a

quota-share reinsurance or the combination of a quota-share reinsurance

and a stop-loss reinsurance under the expected value principle and among

the increasing convex ceded loss functions.
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It is interesting to notice that most optimal forms of reinsurance in these

cited papers are stop-loss reinsurance contracts.

However, an optimal reinsurance contract for an insurer may not be

optimal for a reinsurer and it might be unacceptable for a reinsurer as

pointed out by Borch (1969). An interesting question about optimal

reinsurance is to design a reinsurance so that it considers the interests of

both an insurer and a reinsurer and it is fair, in some sense, to both of the

parties. Borch (1960) first considered this issue. He discussed the optimal

quota-share retention and stop-loss retention that maximize the product of

the expected utility functions of the two parties’ wealth.
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2 Reciprocal reinsurance treaties

We consider the interests of both an insurer and a reinsurer under a

reinsurance treaty f by studying their joint survival probability, which is

denoted by

JfS = Pr{If(X) ≤ P fI + uI, f(X) ≤ P fR + uR},

where uI > 0 and uR > 0 are the initial wealth of the insurer and reinsurer,

respectively; and their joint profitable probability, which is defined by

JfP = Pr{If(X) ≤ P fI , f(X) ≤ P fR}.

We point out that mathematically, the joint profitable probability can be

viewed as the special case of the joint survival probability by setting uI = 0

and uR = 0. However, the two joint probabilities have different economic
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interpretations. When we use them as objective functions, solutions for

optimal reinsurance treaties are different.

Under a reinsurance premium principle π, let Fπ denote the class of

admissible reinsurance policies, which consists of all ceded loss functions

f(x) satisfying 0 ≤ f(x) ≤ x for x ≥ 0.

Furthermore, to avoid some tedious discussions, we assume that the

loss random variable X has a continuous and strictly increasing distribution

function on (0,∞) with a possible mass at 0.

In a quota-share reinsurance, f(X) = (1 − b)X and If(X) = bX,

where 0 ≤ b ≤ 1 is the quota-share retention. We denote the reinsurance

premium, the net insurance premium, the joint survival probability, and

the joint profitable probability for the quota-share reinsurance by PR(b) =

P fR|f(X)=(1−b)X, PI(b) = P fI |f(X)=(1−b)X, JS(b) = JfS |f(X)=(1−b)X and

JP (b) = JfP |f(X)=(1−b)X, respectively.
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Under a stop-loss reinsurance treaty, f(X) = (X − d)+ = max
{
X −

d, 0
}

and If(X) = X ∧ d = min
{
X, d

}
, where d ≥ 0 is the stop-loss

retention. We denote the reinsurance premium, the net insurance premium,

the joint survival probability, and the joint profitable probability for the stop-

loss reinsurance by PR(d) = P fR|f(X)=(X−d)+
, PI(d) = P fI |f(X)=(X−d)+

,

JS(d) = JfS |f(X)=(X−d)+
, and JP (d) = JfP |f(X)=(X−d)+

, respectively.

In a limited stop-loss reinsurance contract, f(X) = (X − d1)+ ∧ d2

and If(X) = X − (X − d1)+ ∧ d2, where d1 ≥ 0 is a threshold level

and the reinsurer will cover the loss over the level d1 while d2 ≥ 0

is the largest loss the reinsurer would like to cover. The retention

in the limited stop-loss reinsurance is the vector (d1, d2) with d1 ≥ 0

and d2 ≥ 0. We denote the reinsurance premium, the net insurance

premium, the joint survival probability, and the joint profitable probability

for the limited stop-loss reinsurance by PR(d1, d2) = P fR|f(X)=(X−d1)+∧d2
,

PI(d1, d2) = P fI |f(X)=(X−d1)+∧d2
, JS(d1, d2) = JfS |f(X)=(X−d1)+∧d2

, and
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JP (d1, d2) = JfP |f(X)=(X−d1)+∧d2
, respectively.
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3 Optimal reinsurance retentions under the expected
value principle

In this section, we assume that the reinsurance premium is determined by

the expected value principle. Under this principle, the reinsurance premium

P fR = (1 + θR)Ef(X), where θR > 0 is the relative safety loadings for the

reinsurer. Thus, in the quota-share reinsurance,

PR(b) = (1 + θR)(1− b)µ and PI(b) = P0 − (1 + θR)(1− b)µ.

In the stop-loss reinsurance,

PR(d) = (1 + θR)E(X − d)+ = (1 + θR)

∫ ∞
d

S(x)dx,

PI(d) = P0 − (1 + θR)

∫ ∞
d

S(x)dx.
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We define p = (1 + θR)µ− P0.

We first determine the optimal quota-share retention b∗ ∈ [0, 1] satisfying

JS(b∗) = maxb∈[0,1] JS(b).

Theorem 1. (1) If uI = p, the optimal quota-share retention is b∗ = 0

satisfying JS(0) = max0≤b≤1 JS(b) = F (uI + uR + P0).

(2) If uI < p, the optimal quota-share retention is b∗ = 1 satisfying JS(1) =

max0≤b≤1 JS(b) = F (uI + P0).

(3) If uI > p, the optimal quota-share retention is

b∗ = b0 =
uI − p

uI + uR − p
(1)

satisfying JS(b∗) = max0≤b≤1 JS(b) = F
(
uI + uR + P0

)
. 2
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Remark 1. In the quota-share reinsurance, we denoted the survival

probabilities of the insurer and reinsurer by SI(b) = Pr{bX ≤ PI(b) + uI}
and SR(b) = Pr{(1 − b)X ≤ PR(b) + uR}. Thus, under the expected

value principle, for 0 < b < 1, SI(b) = F
(
(1 + θR)µ + uI−p

b

)
and

SR(b) = F
(
(1 + θR)µ+ uR

1−b
)
.

It is interesting to notice that under the optimal quota-share retention b∗

given by (1), the insurer and the reinsurer have the same survival probability

with SI(b
∗) = SR(b∗) = F

(
uI + uR + P0

)
. 2

We then consider the joint profitable probability JP (b). In this case, we

obtain the following result.
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Proposition 1. If p = 0, the optimal quota-share retention is b∗ = b

for any b ∈ [0, 1] satisfying JP (b∗) = max0≤b≤1 JP (b) = F (P0). If

p 6= 0, the optimal quota-share retention is b∗ = 1 satisfying JP (1) =

max0≤b≤1 JP (b) = F (P0). 2

We then determine the optimal stop-loss retention d∗ ∈ [0,∞) satisfying

JS(d∗) = maxd∈[0,∞) JS(d).
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Theorem 2. The optimal stop-loss retention d∗ ∈ [0,∞), which

maximizes the joint survival probability JS(d) on [0,∞), exists if and

only if the equation

d+ (1 + θR)

∫ ∞
d

S(x)dx = P0 + uI (2)

has solutions in d ∈ [0,∞). Moreover, when the optimal retention d∗

exists, d∗ is just the solution to equation (2) and satisfies JS(d∗) =

maxd∈[0,∞) JS(d) = F
(
uI + uR + P0

)
. 2

Throughout this paper, we define

αR =
1

1 + θR
and dR = S−1

( 1

1 + θR

)
.

Remark 2. In the stop-loss reinsurance, we denote the survival

probabilities of the insurer and reinsurer by SI(d) = Pr{X∧d ≤ PI(d)+uI}
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and SR(d) = Pr{(X − d)+ ≤ PR(d) + uR}, respectively. Thus,

SI(d) =

{
1 if d ≤ PI(d) + uI,

F
(
uI + PI(d)

)
if d > PI(d) + uI,

and SR(d) = F
(
uR + d+ PR(d)

)
.

It is easy to check that under the optimal stop-loss retention d∗ given

by (2), d∗ = PI(d
∗) + uI and hence SI(d

∗) = 1 while SR(d∗) = F
(
uI +

uR + P0

)
.

Thus, at the optimal stop-loss retention level d∗, the insurer will survive

with a certainty while the reinsurer has a risk of bankrupt. In this sense, a

stop-loss reinsurance is not fair to a reinsurer. 2

We then determine the optimal stop-loss retention d∗ ∈ [0,∞),
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which maximizes the joint profitable probability and satisfies JP (d∗) =

supd∈[0,∞) JP (d).
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Theorem 3. The optimal stop-loss retention d∗ ∈ [0,∞), which

maximizes the joint profitable probability JP (d) on [0,∞), exists if and

only if

dR + (1 + θR)

∫ ∞
dR

S(x)dx ≤ P0 (3)

holds. Moreover, when the optimal stop-loss retention d∗ exists, d∗ is just

the solution to equation

d+ (1 + θR)

∫ ∞
d

S(x)dx = P0 (4)

and satisfies JP (d∗) = maxd∈[0,∞) JP (d) = F
(
P0

)
. 2
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Remark 3. In the stop-loss reinsurance, we denote the profitable

probabilities of the insurer and reinsurer by PRI(d) = Pr{X ∧ d ≤ PI(d)}
and PRR(d) = Pr{(X − d)+ ≤ PR(d)}, respectively. Thus,

PRI(d) =

{
1 if d+ PR(d) ≤ P0,

F
(
P0 − PR(d)

)
if d+ PR(d) > P0,

and PRR(d) = F
(
d+ PR(d)

)
.

Under the optimal stop-loss retention d∗ given by (4), PRI(d
∗) = 1,

and PRR(d∗) = F
(
P0

)
. Thus, at the optimal retention level d∗, the insurer

will make risk-free profits while the reinsurer has a risk of losing money. In

this sense, a stop-loss reinsurance is not fair to a reinsurer. 2
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4 Optimal reinsurance treaties under general premium
principles and among a wide class of reinsurance policies

In the following theorem, we give conditions on f∗ ∈ Fπ so that

Jf
∗

S = Pr{If∗(X) ≤ P f
∗

I + uI, f
∗(X) ≤ P f

∗

R + uR}

= max
f∈Fπ

Pr{If(X) ≤ P fI + uI, f(X) ≤ P fR + uR}

= max
f∈Fπ

JfS (5)

holds.
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Theorem 4. If a ceded loss function f∗ ∈ Fπ satisfies f∗(x) and If∗(x)

are both non-decreasing functions in x ≥ 0, and

P f
∗

R + uR = f∗(uI + uR + P0), (6)

then f∗ is an optimal ceded loss function in Fπ, which maximizes the joint

survival probability and satisfies (5).

Proof: For any f ∈ Fπ, it holds that

JfS = Pr{If(X) ≤ uI + P fI , f(X) ≤ uR + P fR}

≤ Pr{If(X) + f(X) ≤ uI + uR + P fI + P fR}

= Pr{X ≤ uI + uR + P0} = F (uI + uR + P0). (7)

If there exists a ceded loss function f∗ ∈ Fπ satisfying (6), then it follows
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from If(x) = x− f(x) that

If∗(uI + uR + P0) = uI + uR + P0 − f∗(uI + uR + P0)

= uI + uR + P0 − P f
∗

R − uR = uI + P f
∗

I .

Thus

P f
∗

I = If∗(uI + uR + P0)− uI and P f
∗

R = f∗(uI + uR + P0)− uR.

Hence,

{If∗(X) ≤ P f
∗

I + uI, f
∗(X) ≤ P f

∗

R + uR}

= {If∗(X) ≤ If∗(uI + uR + P0), f∗(X) ≤ f∗(uI + uR + P0)}.

Since f∗(·) and If∗(·) are both non-decreasing functions, we have

{X ≤ uI + uR + P0} ⊆ {If∗(X) ≤ If∗(uI + uR + P0)}
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and

{X ≤ uI + uR + P0} ⊆ {f∗(X) ≤ f∗(uI + uR + P0)}.

One can obtain

{X ≤ uI + uR + P0} ⊆

{If∗(X) ≤ If∗(uI + uR + P0), f∗(X) ≤ f∗(uI + uR + P0)},

which means that

Pr{If∗(X) ≤ If∗(uI + uR + P0), f∗(X) ≤ f∗(uI + uR + P0)}

≥ F (uI + uR + P0).
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Therefore, by (7), we have that

Pr{If∗(X) ≤ uI + P f
∗

I , f∗(X) ≤ uR + P f
∗

R } = F (uI + uR + P0) = max
f∈Fπ

JfS .

Hence, f∗ is the optimal ceded loss function in Fπ. 2

Moreover, in the following theorem, we give conditions on f∗ ∈ Fπ so

that

Jf
∗

P = Pr{If∗(X) ≤ P f
∗

I , f∗(X) ≤ P f
∗

R }

= max
f∈Fπ

Pr{If(X) ≤ P fI , f(X) ≤ P fR} = max
f∈Fπ

JfP (8)

holds.
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Theorem 5. If a ceded loss function f∗ ∈ Fπ satisfies f∗(x) and If∗(x)

are both non-decreasing functions in x ≥ 0, and

P f
∗

R = f∗(P0), (9)

then f∗ is an optimal ceded loss function in Fπ, which maximizes the joint

profitable probability and satisfies (8). 2

Remark 4. Theorems 4 and 5 enable one to design optimal reinsurance

contracts that maximize the joint survival probability and the joint profitable

probability under a general reinsurance premium principle π and among the

wide class of reinsurance contracts Fπ.

We illustrate the applications of Theorems 4 and 5 by designing an

optimal reinsurance in the form of a limited stop-loss reinsurance under the

expected value principle. 2
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In a limited stop-loss reinsurance, f(X) = (X − d1)+ ∧ d2 and

If(X) = X − (X − d1)+ ∧ d2. The retention for the limited stop-loss

reinsurance is the vector (d1, d2), where (d1, d2) ∈ [0,∞)× [0,∞).

Let Γ be the set of admissible retentions for the limited stop-loss

reinsurance. Then

Γ =
{

(d1, d2) : d1 ≥ 0 and d2 ≥ 0
}
.

In this subsection, we first design an optimal limited stop-loss reinsurance

f∗(X) = (X − d∗1)+ ∧ d∗2, which maximizes the joint profitable probability
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and satisfies

JS(d∗1, d
∗
2) = max

(d1,d2)∈Γ
JS(d1, d2)

= max
f∈Fπ

Pr{If(X) ≤ P fI + uI, f(X) ≤ P fR + uR}. (10)

26



Note that in the limited stop-loss reinsurance and under the expected

value principle, the reinsurance premium and the net insurance premium are

PR(d1, d2) = (1 + θR)E
[
(X − d1)+ ∧ d2

]
= (1 + θR)

∫ d1+d2

d1

S(x)dx,

PI(d1, d2) = P0 − (1 + θR)

∫ d1+d2

d1

S(x)dx.

Throughout this paper, we define

Γ1 = {(d1, d2) : (d1, d2) ∈ Γ, d1 < uI + uR + P0, d1 + d2 > uI + uR + P0},

Γ2 = {(d1, d2) : (d1, d2) ∈ Γ, d1 < uI + uR + P0, d1 + d2 ≤ uI + uR + P0}.
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Theorem 6. Let π be the expected value principle. If the equation

d1 + (1 + θR)

∫ d1+d2

d1

S(x)dx = uI + P0 (11)

has solutions in Γ1 or the equation

d2 − (1 + θR)

∫ d1+d2

d1

S(x)dx = uR (12)

has solutions in Γ2, then a limited stop-loss reinsurance with retention

(d∗1, d
∗
2) ∈ Γ∗1 ∪ Γ∗2 is an optimal reinsurance in Fπ, which maximizes the

joint survival probability and satisfies (10). Here, Γ∗1 and Γ∗2 are the sets of

solutions to equations (11) and (12), respectively.
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Proof: For the limited stop-loss reinsurance, equation (6) is reduced to

(1 + θR)

∫ d1+d2

d1

S(x)dx+ uR = (uI + uR + P0 − d1)+ ∧ d2. (13)

Note that equation (13) has solutions in Γ is equivalent to that equation

(11) has solutions in Γ1 or equation (12) has solutions in Γ2. Thus, we

obtain Theorem 6 by Theorem 4. 2

Remark 5. In the limited stop-loss reinsurance, we denote the survival

probabilities of the insurer and reinsurer by SI(d1, d2) = Pr{X − (X −
d1)+ ∧ d2 ≤ PI(d1, d2) + uI} and SR(d1, d2) = Pr{(X − d1)+ ∧ d2 ≤
PR(d1, d2) + uR}, respectively. Thus,

SI(d1, d2) =

{
F (uI + PI(d1, d2)) if d1 > uI + PI(d1, d2),

F
(
uI + d2 + PI(d1, d2)

)
if d1 ≤ uI + PI(d1, d2),

29



and

SR(d1, d2) =

{
F (d1 + uR + PR(d1, d2)) if d2 > uR + PR(d1, d2),

1 if d2 ≤ uR + PR(d1, d2).

Under the optimal retentions (d∗1, d
∗
2) given by (11) in Γ1, it is easy to

see that SR(d∗1, d
∗
2) = F (uI + uR + P0) < SI(d

∗
1, d
∗
2) < 1. While under the

optimal retentions (d∗1, d
∗
2) given by (12) in Γ2, SI(d

∗
1, d
∗
2) = F (uI+uR+P0)

and SR(d∗1, d
∗
2) = 1.

It is interesting to note that under the optimal retentions (d∗1, d
∗
2) given

by (12) in Γ2, the reinsurer will survive with a certainty while the insurer

has a risk of bankrupt. Hence, the limited stop-loss reinsurance with the

retentions (d∗1, d
∗
2) given by (12) in Γ2 is not fair to the insurer. However,

the limited stop-loss reinsurance with the retentions (d∗1, d
∗
2) given by (11)
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in Γ1 can avoid such an unfair situation. 2

We then design an optimal limited stop-loss reinsurance f∗(X) =

(X−d∗1)+∧d∗2, which maximizes the joint profitable probability and satisfies

JP (d∗1, d
∗
2) = max

(d1,d2)∈Γ
JP (d1, d2) = max

f∈Fπ
Pr{If(X) ≤ P fI , f(X) ≤ P fR}. (14)

In this subsection, we define

Γ̄1 = {(d1, d2) : (d1, d2) ∈ Γ d1 < P0, d2 > 0, d1 + d2 > P0},

Γ̄2 = {(d1, d2) : (d1, d2) ∈ Γ, d1 < P0, d2 > 0, d1 + d2 ≤ P0},

Γ̄3 = {(d1, d2) : (d1, d2) ∈ Γ, d2 = 0}.
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Theorem 7. Let π be the expected value principle. A limited stop-loss

reinsurance with retention (d∗1, d
∗
2) is an optimal reinsurance in Fπ, which

maximize the joint profitable probability and satisfies (14), if (d∗1, d
∗
2) ∈ Γ̄1

and satisfies equation

d1 + (1 + θR)

∫ d1+d2

d1

S(x)dx = P0 (15)

or (d∗1, d
∗
2) ∈ Γ̄2 and satisfies the equation

d2 − (1 + θR)

∫ d1+d2

d1

S(x)dx = 0 (16)

or (d∗1, d
∗
2) ∈ Γ̄3.
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Proof: For the limited stop-loss reinsurance, equation (9) is reduced to

(1 + θR)

∫ d1+d2

d1

S(x)dx = (P0 − d1)+ ∧ d2. (17)

Note that any (d1, d2) ∈ Γ̄3 is a solution of equation (17) and equation

(17) has solutions in Γ̄ = {(d1, d2) : (d1, d2) ∈ Γ, d2 > 0} is equivalent to

that equation (15) has solutions in Γ̄1 or equation (16) has solutions in Γ̄2.

Thus, we obtain Theorem 7 by Theorem 5. 2

Remark 6. In the limited stop-loss reinsurance, we denote the profitable

probabilities of the insurer and reinsurer by PRI(d1, d2) = Pr{X −
(X − d1)+ ∧ d2 ≤ PI(d1, d2)} and PRR(d1, d2) = Pr{(X − d1)+ ∧ d2 ≤
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PR(d1, d2)}, respectively. Thus,

PRI(d1, d2) =

{
F (PI(d1, d2)) if d1 > PI(d1, d2),

F
(
d2 + PI(d1, d2)

)
if d1 ≤ PI(d1, d2),

and

PRR(d1, d2) =

{
F (d1 + PR(d1, d2)) if d2 > PR(d1, d2),

1 if d2 ≤ PR(d1, d2).
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Under the optimal retentions (d∗1, d
∗
2) given by (16) in Γ̄2 or (d∗1, d

∗
2) ∈ Γ̄3,

PRI(d
∗
1, d
∗
2) = F (P0) and PRR(d∗1, d

∗
2) = 1. While under the optimal

retentions (d∗1, d
∗
2) given by (15) in Γ̄1, PRR(d∗1, d

∗
2) = F (P0) <

PRI(d
∗
1, d
∗
2) < 1.

Note that under the optimal retentions (d∗1, d
∗
2) given by (16) in Γ̄2 or

(d∗1, d
∗
2) ∈ Γ̄3, the reinsurer will make risk-free profits while the insurer has

a risk of losing money.

Hence, the limited stop-loss reinsurance with the retentions (d∗1, d
∗
2)

given by (16) in Γ̄2 or (d∗1, d
∗
2) ∈ Γ̄3 is not fair to the insurer.

However, the limited stop-loss reinsurance with the retentions (d∗1, d
∗
2)

given by (15) in Γ̄1 can avoid such an unfair situation. 2
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