On the (in-)dependence between financial and actuarial risks under physical and pricing measures

Jan Dhaene

China International Conference on Insurance and Risk Management
Kunming, Yunnan, China, July 2013

Agenda

- Part I: ${ }^{1}$
* (In-)dependence under \mathbb{P} versus (in-)dependence under \mathbb{Q}
- Part II: ${ }^{2}$
${ }^{1}$ Dhaene, Kukush, Luciano, Schoutens, Stassen (2013).
On the (in-)dependence between financial and actuarial risks. Insurance:
Mathematics \& Economics, 52(3), 522-531.
${ }^{2}$ Dhaene, Stassen, Vellekoop, Devolder (2013)
The Minimal Entropy Martingale Measure in a combined financial-actuarial
world. Work in progress.

Agenda

- Part I: ${ }^{1}$
- (In-)dependence under \mathbb{P} versus (in-)dependence under \mathbb{Q}.
- $\mathbb{Q}=$ a pricing measure.
- Part II: ${ }^{2}$
${ }^{1}$ Dhaene, Kukush, Luciano, Schoutens, Stassen (2013).
On the (in-)dependence between financial and actuarial risks. Insurance: Mathematics \& Economics, 52(3), 522-531.
${ }^{2}$ Dhaene, Stassen, Vellekoop, Devolder (2013)
The Minimal Entropy Martingale Measure in a combined financial-actuarial
world. Work in progress.

Agenda

- Part I: ${ }^{1}$
- (In-)dependence under \mathbb{P} versus (in-)dependence under \mathbb{Q}.
- $\mathrm{Q}=a$ pricing measure.
- Part II: ${ }^{2}$
${ }^{1}$ Dhaene, Kukush, Luciano, Schoutens, Stassen (2013).
On the (in-)dependence between financial and actuarial risks. Insurance: Mathematics \& Economics, 52(3), 522-531.
${ }^{2}$ Dhaene, Stassen, Vellekoop, Devolder (2013)
The Minimal Entropy Martingale Measure in a combined financial-actuarial
world. Work in progress.

Agenda

- Part I: ${ }^{1}$
- (In-)dependence under \mathbb{P} versus (in-)dependence under \mathbb{Q}.
- $\mathbf{Q}=$ a pricing measure.
- Part II: ${ }^{2}$
- (In-)dependence under \mathbb{P} versus (in-)dependence under $\widehat{\mathbb{Q}}$.
${ }^{1}$ Dhaene, Kukush, Luciano, Schoutens, Stassen (2013).
On the (in-)dependence between financial and actuarial risks. Insurance:
Mathematics \& Economics, 52(3), 522-531.
${ }^{2}$ Dhaene, Stassen, Vellekoop, Devolder (2013).
The Minimal Entropy Martingale Measure in a combined financial-actuarial world. Work in progress.

Agenda

- Part I: ${ }^{1}$
- (In-)dependence under \mathbb{P} versus (in-)dependence under \mathbb{Q}.
- $\mathrm{Q}=$ a pricing measure.
- Part II: ${ }^{2}$
- (In-)dependence under \mathbb{P} versus (in-)dependence under $\widehat{\mathbb{Q}}$.
- $\widehat{\mathbb{Q}}=$ the minimal entropy martingale measure.
${ }^{1}$ Dhaene, Kukush, Luciano, Schoutens, Stassen (2013).
On the (in-)dependence between financial and actuarial risks. Insurance:
Mathematics \& Economics, 52(3), 522-531.
${ }^{2}$ Dhaene, Stassen, Vellekoop, Devolder (2013).
The Minimal Entropy Martingale Measure in a combined financial-actuarial world. Work in progress.

Agenda

- Part I: ${ }^{1}$
- (In-)dependence under \mathbb{P} versus (in-)dependence under \mathbb{Q}.
- $\mathrm{Q}=$ a pricing measure.
- Part II: ${ }^{2}$
- (In-)dependence under \mathbb{P} versus (in-)dependence under $\widehat{\mathbb{Q}}$.
- $\widehat{\mathbb{Q}}=$ the minimal entropy martingale measure.
${ }^{1}$ Dhaene, Kukush, Luciano, Schoutens, Stassen (2013).
On the (in-)dependence between financial and actuarial risks. Insurance:
Mathematics \& Economics, 52(3), 522-531.
${ }^{2}$ Dhaene, Stassen, Vellekoop, Devolder (2013).
The Minimal Entropy Martingale Measure in a combined financial-actuarial world. Work in progress.

Part I - Introduction

Insurance-linked securities

- Insurance securitization:
- Transfer of underwriting risk to capital markets,
- through issuance of financial securities,
- with payoffs contingent on the outcome of quantities related to this underwriting risk.
- Examples:
- Modeling and pricing insurance-linked securities:

Part I - Introduction

Insurance-linked securities

- Insurance securitization:
- Transfer of underwriting risk to capital markets,
- through issuance of financial securities,
- with payoffs contingent on the outcome of quantities related to this underwriting risk.
- Examples:
- Modeling and pricing insurance-linked securities:

Part I - Introduction

Insurance-linked securities

- Insurance securitization:
- Transfer of underwriting risk to capital markets,
- through issuance of financial securities,
- with payoffs contingent on the outcome of quantities related to this underwriting risk.
- Examples:
- Modeling and pricing insurance-linked securities:

Part I - Introduction

Insurance-linked securities

- Insurance securitization:
- Transfer of underwriting risk to capital markets,
- through issuance of financial securities,
- with payoffs contingent on the outcome of quantities related to this underwriting risk.
- Examples:
- Modeling and pricing insurance-linked securities:

Part I - Introduction

Insurance-linked securities

- Insurance securitization:
- Transfer of underwriting risk to capital markets,
- through issuance of financial securities,
- with payoffs contingent on the outcome of quantities related to this underwriting risk.
- Examples:
- Catastrophe bonds.
- Longevity bonds.
- Modeling and pricing insurance-linked securities:

Part I - Introduction

Insurance-linked securities

- Insurance securitization:
- Transfer of underwriting risk to capital markets,
- through issuance of financial securities,
- with payoffs contingent on the outcome of quantities related to this underwriting risk.
- Examples:
- Catastrophe bonds.
- Longevity bonds.
- Modeling and pricing insurance-linked securities:

Part I - Introduction

Insurance-linked securities

- Insurance securitization:
- Transfer of underwriting risk to capital markets,
- through issuance of financial securities,
- with payoffs contingent on the outcome of quantities related to this underwriting risk.
- Examples:
- Catastrophe bonds.
- Longevity bonds.
- Modeling and pricing insurance-linked securities:

Part I - Introduction

- Insurance securitization:
- Transfer of underwriting risk to capital markets,
- through issuance of financial securities,
- with payoffs contingent on the outcome of quantities related to this underwriting risk.
- Examples:
- Catastrophe bonds.
- Longevity bonds.
- Modeling and pricing insurance-linked securities:
- Financial and actuarial risks.
- Dependence between financial and actuarial risks.

Part I - Introduction

- Insurance securitization:
- Transfer of underwriting risk to capital markets,
- through issuance of financial securities,
- with payoffs contingent on the outcome of quantities related to this underwriting risk.
- Examples:
- Catastrophe bonds.
- Longevity bonds.
- Modeling and pricing insurance-linked securities:
- Financial and actuarial risks.
- Dependence between financial and actuarial risks.

Part I - Introduction

- Insurance securitization:
- Transfer of underwriting risk to capital markets,
- through issuance of financial securities,
- with payoffs contingent on the outcome of quantities related to this underwriting risk.
- Examples:
- Catastrophe bonds.
- Longevity bonds.
- Modeling and pricing insurance-linked securities:
- Financial and actuarial risks.
- Dependence between financial and actuarial risks.

Introduction

Probabilities

- The combined financial-actuarial world:

$$
\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}\right)
$$

\Rightarrow Consider a market of tradable assets in this combined world.
\Rightarrow Assume that this market is arbitrage-free.

- Physical probability measure \mathbb{P} :
- Pricing probability measure \mathbb{Q} :

Introduction

Probabilities

- The combined financial-actuarial world:

$$
\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}\right)
$$

- Consider a market of tradable assets in this combined world.
- Assume that this market is arbitrage-free.
- Physical probability measure \mathbb{P} :
- Pricing probability measure Q :

Introduction

Probabilities

- The combined financial-actuarial world:

$$
\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}\right)
$$

- Consider a market of tradable assets in this combined world.
- Assume that this market is arbitrage-free.
- Physical probability measure \mathbb{P} :
- Pricing probability measure Q :

Introduction

Probabilities

- The combined financial-actuarial world:

$$
\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}\right)
$$

- Consider a market of tradable assets in this combined world.
- Assume that this market is arbitrage-free.
- Physical probability measure \mathbb{P} :

- Pricing probability measure Q:

Introduction

Probabilities

- The combined financial-actuarial world:

$$
\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}\right)
$$

- Consider a market of tradable assets in this combined world.
- Assume that this market is arbitrage-free.
- Physical probability measure \mathbb{P} :
- Used for probability statements about future evolutions of financial and actuarial risks.
- Pricing probability measure Q:

Introduction

Probabilities

- The combined financial-actuarial world:

$$
\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}\right)
$$

- Consider a market of tradable assets in this combined world.
- Assume that this market is arbitrage-free.
- Physical probability measure \mathbb{P} :
- Used for probability statements about future evolutions of financial and actuarial risks.
- Pricing probability measure Q:

Introduction

Probabilities

- The combined financial-actuarial world:

$$
\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}\right)
$$

- Consider a market of tradable assets in this combined world.
- Assume that this market is arbitrage-free.
- Physical probability measure \mathbb{P} :
- Used for probability statements about future evolutions of financial and actuarial risks.
- Pricing probability measure Q:
- Used for expressing prices of tradable assets.

\square

Introduction

Probabilities

- The combined financial-actuarial world:

$$
\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}\right)
$$

- Consider a market of tradable assets in this combined world.
- Assume that this market is arbitrage-free.
- Physical probability measure \mathbb{P} :
- Used for probability statements about future evolutions of financial and actuarial risks.
- Pricing probability measure Q:
- Used for expressing prices of tradable assets.
- Price recipy:

The current price $S(0)$ of a traded asset with pay-off $S(T)$ at time T can be expressed as:

$$
S(0)=e^{-r T} \mathbb{E}^{\mathbb{Q}}[S(T)]
$$

Introduction

A Black \& Scholes - setting

- A correlated Brownian motion process:
> $\left\{\left(B^{(1)}(t), B^{(2)}(t)\right) \mid 0 \leq t \leq T\right\}$
- defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0<t<T}, \mathbb{P}\right)$,
- $\left(\mathcal{F}_{t}\right)_{0<t<T}$ is the 'natural filtration' induced by this process,

- A market of tradable assets:
a deterministic risk-free interest rate r,
a financial asset ${ }^{(1)}$ and an actuarial asset ${ }^{(2)}$
- \mathbb{P}-dynamics of asset prices:

$$
\frac{d S^{(i)}(t)}{S^{(i)}(t)}=\mu^{(i)} d t+\sigma^{(i)} d B^{(i)}(t), \quad i=1,2
$$

\Rightarrow We assume that this market is arbitrage-free.

Introduction

A Black \& Scholes - setting

- A correlated Brownian motion process:
- $\left\{\left(B^{(1)}(t), B^{(2)}(t)\right) \mid 0 \leq t \leq T\right\}$,
- defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$,
$* ~$
- $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$ is the 'natural filtration' induced by this process,
- $\operatorname{Corrr}_{\mathbb{P}}\left[B^{(1)}(t), B^{(2)}(t)\right]=\rho$.
- A market of tradable assets:
a deterministic risk-free interest rate r,
a financial asset ${ }^{(1)}$ and an actuarial asset ${ }^{(2)}$
- \mathbb{P}-dynamics of asset prices:

$$
\frac{d S^{(i)}(t)}{S^{(i)}(t)}=\mu^{(i)} d t+\sigma^{(i)} d B^{(i)}(t), \quad i=1,2
$$

- We assume that this market is arbitrage-free.

Introduction

A Black \& Scholes - setting

- A correlated Brownian motion process:
- $\left\{\left(B^{(1)}(t), B^{(2)}(t)\right) \mid 0 \leq t \leq T\right\}$,
- defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$,
- A market of tradable assets:
a deterministic risk-free interest rate r,
a financial asset ${ }^{(1)}$ and an actuarial asset ${ }^{(2)}$
- \mathbb{P}-dynamics of asset prices:

- We assume that this market is arbitrage-free.

Introduction

A Black \& Scholes - setting

- A correlated Brownian motion process:
- $\left\{\left(B^{(1)}(t), B^{(2)}(t)\right) \mid 0 \leq t \leq T\right\}$,
- defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0<t<T}, \mathbb{P}\right)$,
- $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$ is the 'natural filtration' induced by this process,

- A market of tradable assets:
a deterministic risk-free interest rate r,
a financial asset ${ }^{(1)}$ and an actuarial asset ${ }^{(2)}$
- \mathbb{P}-dynamics of asset prices:

\Rightarrow We assume that this market is arbitrage-free.

Introduction

A Black \& Scholes - setting

- A correlated Brownian motion process:
- $\left\{\left(B^{(1)}(t), B^{(2)}(t)\right) \mid 0 \leq t \leq T\right\}$,
- defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$,
- $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$ is the 'natural filtration' induced by this process,
- $\operatorname{Corr}_{\mathbb{P}}\left[B^{(1)}(t), B^{(2)}(t)\right]=\rho$.
- A market of tradable assets:
a deterministic risk-free interest rate r,
a financial asset ${ }^{(1)}$ and an actuarial asset ${ }^{(2}$
- \mathbb{P}-dynamics of asset prices:

- We assume that this market is arbitrage-free.

Introduction

A Black \& Scholes - setting

- A correlated Brownian motion process:
- $\left\{\left(B^{(1)}(t), B^{(2)}(t)\right) \mid 0 \leq t \leq T\right\}$,
- defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$,
- $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$ is the 'natural filtration' induced by this process,
- $\operatorname{Corr}_{\mathbb{P}}\left[B^{(1)}(t), B^{(2)}(t)\right]=\rho$.
- A market of tradable assets:
a deterministic risk-free interest rate r, a financial asset ${ }^{(1)}$ and an actuarial asset ${ }^{(2)}$.
- \mathbb{P}-dynamics of asset prices:

- We assume that this market is arbitrage-free.

Introduction

A Black \& Scholes - setting

- A correlated Brownian motion process:
- $\left\{\left(B^{(1)}(t), B^{(2)}(t)\right) \mid 0 \leq t \leq T\right\}$,
- defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$,
- $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$ is the 'natural filtration' induced by this process,
- $\operatorname{Corr}_{\mathbb{P}}\left[B^{(1)}(t), B^{(2)}(t)\right]=\rho$.
- A market of tradable assets:
a deterministic risk-free interest rate r,
a financial asset ${ }^{(1)}$ and an actuarial asset ${ }^{(2)}$.
- \mathbb{P}-dynamics of asset prices:

$$
\frac{d S^{(i)}(t)}{S^{(i)}(t)}=\mu^{(i)} d t+\sigma^{(i)} d B^{(i)}(t), \quad i=1,2
$$

- We assume that this market is arbitrage-free.

Introduction

A Black \& Scholes - setting

- A correlated Brownian motion process:
- $\left\{\left(B^{(1)}(t), B^{(2)}(t)\right) \mid 0 \leq t \leq T\right\}$,
- defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$,
- $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$ is the 'natural filtration' induced by this process,
- $\operatorname{Corr}_{\mathbb{P}}\left[B^{(1)}(t), B^{(2)}(t)\right]=\rho$.
- A market of tradable assets:
a deterministic risk-free interest rate r,
a financial asset ${ }^{(1)}$ and an actuarial asset ${ }^{(2)}$.
- $\underline{\mathbb{P} \text {-dynamics of asset prices: }}$

$$
\frac{d S^{(i)}(t)}{S^{(i)}(t)}=\mu^{(i)} d t+\sigma^{(i)} d B^{(i)}(t), \quad i=1,2
$$

- We assume that this market is arbitrage-free.

Introduction

A Black \& Scholes - setting

- Q-dynamics of asset prices:

$$
\frac{d S^{(i)}(t)}{S^{(i)}(t)}=r d t+\sigma^{(i)} d W^{(i)}(t), \quad i=1,2
$$

- Consider the asset prices $S^{(1)}(t)$ and $S^{(2)}(t)$.

Introduction

A Black \& Scholes - setting

- Q-dynamics of asset prices:

$$
\frac{d S^{(i)}(t)}{S^{(i)}(t)}=r d t+\sigma^{(i)} d W^{(i)}(t), \quad i=1,2
$$

- $\left(W^{(1)}(t), W^{(2)}(t)\right)$: correlated Brownian motion process,
\Rightarrow defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{Q}\right)$

Consider the asset prices $S^{(1)}(t)$ and $S^{(2)}(t)$.

Introduction

A Black \& Scholes - setting

- Q-dynamics of asset prices:

$$
\frac{d S^{(i)}(t)}{S^{(i)}(t)}=r d t+\sigma^{(i)} d W^{(i)}(t), \quad i=1,2
$$

- $\left(W^{(1)}(t), W^{(2)}(t)\right):$ correlated Brownian motion process,
- defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{Q}\right)$,
- Consider the asset prices $S^{(1)}(t)$ and $S^{(2)}(t)$.

Introduction

A Black \& Scholes - setting

- Q-dynamics of asset prices:

$$
\frac{d S^{(i)}(t)}{S^{(i)}(t)}=r d t+\sigma^{(i)} d W^{(i)}(t), \quad i=1,2
$$

- $\left(W^{(1)}(t), W^{(2)}(t)\right):$ correlated Brownian motion process,
- defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbf{Q}\right)$,
- $\operatorname{Corr}_{\mathrm{Q}}\left[W^{(1)}(t), W^{(2)}(t)\right]=\rho$.
- Consider the asset prices $S^{(1)}(t)$ and $S^{(2)}(t)$

Introduction

A Black \& Scholes - setting

- Q-dynamics of asset prices:

$$
\frac{d S^{(i)}(t)}{S^{(i)}(t)}=r d t+\sigma^{(i)} d W^{(i)}(t), \quad i=1,2
$$

- $\left(W^{(1)}(t), W^{(2)}(t)\right)$: correlated Brownian motion process,
- defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{Q}\right)$,
- $\operatorname{Corr}_{\mathbb{Q}}\left[W^{(1)}(t), W^{(2)}(t)\right]=\rho$.
- Consider the asset prices $S^{(1)}(t)$ and $S^{(2)}(t)$.
- \mathbb{P} - independence $\Leftrightarrow \mathbb{Q}$ - independence.
- \mathbb{P} - copula $=\mathbb{Q}$ - copula.

Introduction

A Black \& Scholes - setting

- Q-dynamics of asset prices:

$$
\frac{d S^{(i)}(t)}{S^{(i)}(t)}=r d t+\sigma^{(i)} d W^{(i)}(t), \quad i=1,2
$$

- $\left(W^{(1)}(t), W^{(2)}(t)\right)$: correlated Brownian motion process,
- defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{Q}\right)$,
- $\operatorname{Corr}_{\mathrm{Q}}\left[W^{(1)}(t), W^{(2)}(t)\right]=\rho$.
- Consider the asset prices $S^{(1)}(t)$ and $S^{(2)}(t)$.
- \mathbb{P} - independence $\Leftrightarrow \mathbb{Q}$ - independence.

Introduction

A Black \& Scholes - setting

- Q-dynamics of asset prices:

$$
\frac{d S^{(i)}(t)}{S^{(i)}(t)}=r d t+\sigma^{(i)} d W^{(i)}(t), \quad i=1,2
$$

- $\left(W^{(1)}(t), W^{(2)}(t)\right)$: correlated Brownian motion process,
- defined on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{Q}\right)$,
- $\operatorname{Corr}_{\mathrm{Q}}\left[W^{(1)}(t), W^{(2)}(t)\right]=\rho$.
- Consider the asset prices $S^{(1)}(t)$ and $S^{(2)}(t)$.
- \mathbb{P} - independence $\Leftrightarrow \mathbb{Q}$ - independence.
- \mathbb{P} - copula $=\mathbb{Q}$ - copula.

Introduction

A general setting

- For a general asset pricing model:
- \mathbb{P} - copula $\neq \mathbb{Q}$ - copula.
- \mathbb{P} - independence $\Leftrightarrow Q$ - independence.
- \mathbb{P} - comonotonicity $\Leftrightarrow \mathbb{Q}$ - comonotonicity
- Assuming independence between financial and actuarial risks:

Introduction

A general setting

- For a general asset pricing model:
- \mathbb{P} - copula $\neq \mathbb{Q}$ - copula.
- \mathbb{P} - independence $\Leftrightarrow \mathbb{Q}$ - independence.
- \mathbb{P} - comonotonicity $\Leftrightarrow Q$ - comonotonicity.
- Assuming indenendence between financial and actuarial risks:

Introduction

A general setting

- For a general asset pricing model:
- \mathbb{P} - copula $\neq \mathbb{Q}$ - copula.
- \mathbb{P} - independence $\nLeftarrow \mathbb{Q}$ - independence.
- \mathbb{P} - comonotonicity $\Leftrightarrow \mathbb{Q}$ - comonotonicity.
- Assuming independence between financial and actuarial risks:

Introduction

A general setting

- For a general asset pricing model:
- \mathbb{P} - copula $\neq \mathrm{Q}$ - copula.
- \mathbb{P} - independence $\nLeftarrow \mathbb{Q}$ - independence.
- \mathbb{P} - comonotonicity $\Leftrightarrow \mathbb{Q}$ - comonotonicity.
- Assuming independence between financial and actuarial risks:

Introduction

A general setting

- For a general asset pricing model:
- \mathbb{P} - copula $\neq \mathrm{Q}$ - copula.
- \mathbb{P} - independence $\nLeftarrow \mathrm{Q}$ - independence.
- \mathbb{P} - comonotonicity $\Leftrightarrow \mathbb{Q}$ - comonotonicity.
- Assuming independence between financial and actuarial risks:
- \mathbb{P} - independence might be a reasonable assumption.
- Q - independence is a convenient assumption.
- \mathbb{P} - independence $\nRightarrow \mathbb{Q}$ - independence.
- Is there any relation between \mathbb{P} - and \mathbb{Q} - independence?

Introduction

A general setting

- For a general asset pricing model:
- \mathbb{P} - copula $\neq \mathbb{Q}$ - copula.
- \mathbb{P} - independence $\nLeftarrow \mathbb{Q}$ - independence.
- \mathbb{P} - comonotonicity $\Leftrightarrow \mathbb{Q}$ - comonotonicity.
- Assuming independence between financial and actuarial risks:
- \mathbb{P} - independence might be a reasonable assumption.
- Q - independence is a convenient assumption.
- \mathbb{P} - independence $\nRightarrow \mathbb{Q}$ - independence.
- Is there any relation between \mathbb{P} - and \mathbb{Q} - independence?

Introduction

A general setting

- For a general asset pricing model:
- \mathbb{P} - copula $\neq \mathbb{Q}$ - copula.
- \mathbb{P} - independence $\nLeftarrow \mathrm{Q}$ - independence.
- \mathbb{P} - comonotonicity $\Leftrightarrow \mathbb{Q}$ - comonotonicity.
- Assuming independence between financial and actuarial risks:
- \mathbb{P} - independence might be a reasonable assumption.
- Q - independence is a convenient assumption.
- \mathbb{P} - independence $\nRightarrow \mathbb{Q}$ - independence.
- Is there any relation between \mathbb{P} - and \mathbb{Q} - independence?

Introduction

A general setting

- For a general asset pricing model:
- \mathbb{P} - copula $\neq \mathrm{Q}$ - copula.
- \mathbb{P} - independence $\nLeftarrow \mathbb{Q}$ - independence.
- \mathbb{P} - comonotonicity $\Leftrightarrow \mathbb{Q}$ - comonotonicity.
- Assuming independence between financial and actuarial risks:
- \mathbb{P} - independence might be a reasonable assumption.
- Q - independence is a convenient assumption.
- \mathbb{P} - independence $\nRightarrow Q$ - independence.
- Is there any relation between \mathbb{P} - and \mathbb{Q} - independence?

Introduction

A general setting

- For a general asset pricing model:
- \mathbb{P} - copula $\neq \mathbb{Q}$ - copula.
- \mathbb{P} - independence $\nLeftarrow \mathbb{Q}$ - independence.
- \mathbb{P} - comonotonicity $\Leftrightarrow \mathbb{Q}$ - comonotonicity.
- Assuming independence between financial and actuarial risks:
- \mathbb{P} - independence might be a reasonable assumption.
- Q - independence is a convenient assumption.
- \mathbb{P} - independence $\nRightarrow Q$ - independence.
- Is there any relation between \mathbb{P} - and \mathbb{Q} - independence?

A (simple) combined financial-biometrical world

- A simple world: $(\Omega, \mathcal{F}, \mathbb{P})$
- Single period, finite state setting. - We consider time 0 ($=$ now) and time 1.

Disks $=r . v$'s of which outcome is known at time 1 :

- A market of tradable assets:

A (simple) combined financial-biometrical world

- A simple world: $(\Omega, \mathcal{F}, \mathbb{P})$
- Single period, finite state setting.
- Risks $=$ r.v.'s of which outcome is known at time 1 :
- A market of tradable assets:

A (simple) combined financial-biometrical world

- A simple world: $(\Omega, \mathcal{F}, \mathbb{P})$
- Single period, finite state setting.
- We consider time 0 (= now) and time 1.
- Risks $=$ r.v.'s of which outcome is known at time 1 :
- A market of tradable assets:

A (simple) combined financial-biometrical world

- A simple world: $(\Omega, \mathcal{F}, \mathbb{P})$
- Single period, finite state setting.
- We consider time 0 (= now) and time 1 .
- Risks $=$ r.v.'s of which outcome is known at time 1 :
- Pure financial risks (stock price at time 1).
- Pure biometrical risks (survival index of population at time 1).
- A market of tradable assets:

A (simple) combined financial-biometrical world

- A simple world: $(\Omega, \mathcal{F}, \mathbb{P})$
- Single period, finite state setting.
- We consider time 0 (= now) and time 1 .
- Risks $=$ r.v.'s of which outcome is known at time 1 :
- Pure financial risks (stock price at time 1).
- A market of tradable assets:

A (simple) combined financial-biometrical world

- A simple world: $(\Omega, \mathcal{F}, \mathbb{P})$
- Single period, finite state setting.
- We consider time 0 (= now) and time 1 .
- Risks $=$ r.v.'s of which outcome is known at time 1 :
- Pure financial risks (stock price at time 1).
- Pure biometrical risks (survival index of population at time 1).
- A market of tradable assets:

A (simple) combined financial-biometrical world

- A simple world: $(\Omega, \mathcal{F}, \mathbb{P})$
- Single period, finite state setting.
- We consider time 0 (= now) and time 1 .
- Risks $=$ r.v.'s of which outcome is known at time 1 :
- Pure financial risks (stock price at time 1).
- Pure biometrical risks (survival index of population at time 1).
- A market of tradable assets:
- Their current (time-0) prices are known.
- Their time-1 prices are outcomes of financial / biometrical risks.

A (simple) combined financial-biometrical world

- A simple world: $(\Omega, \mathcal{F}, \mathbb{P})$
- Single period, finite state setting.
- We consider time 0 (= now) and time 1 .
- Risks $=$ r.v.'s of which outcome is known at time 1 :
- Pure financial risks (stock price at time 1).
- Pure biometrical risks (survival index of population at time 1).
- A market of tradable assets:
- Their current (time-0) prices are known.
- Their time-1 prices are outcomes of financial / biometrical
risks.

A (simple) combined financial-biometrical world

- A simple world: $(\Omega, \mathcal{F}, \mathbb{P})$
- Single period, finite state setting.
- We consider time 0 ($=$ now) and time 1.
- Risks $=$ r.v.'s of which outcome is known at time 1 :
- Pure financial risks (stock price at time 1).
- Pure biometrical risks (survival index of population at time 1).
- A market of tradable assets:
- Their current (time-0) prices are known.
- Their time-1 prices are outcomes of financial / biometrical risks.

A combined financial-biometrical world

The financial world

- Risk-free bond:
- Interest rate $r=0$
- Stock:
- Financial world:

A combined financial-biometrical world

The financial world

- Risk-free bond:
- Interest rate $r=0$.
- Stock:
- Financial world:

A combined financial-biometrical world

The financial world

- Risk-free bond:
- Interest rate $r=0$.
- Stock:
- Current price: $S^{(1)}(0)=100$.
- Price at time 1: $S^{(1)}(1)$, which is either 50 or 150 .
- Financial world:

A combined financial-biometrical world

The financial world

- Risk-free bond:
- Interest rate $r=0$.
- Stock:
- Current price: $S^{(1)}(0)=100$.
- Price at time 1: $S^{(1)}(1)$, which is either 50 or 150 .
- Financial world:

A combined financial-biometrical world

The financial world

- Risk-free bond:
- Interest rate $r=0$.
- Stock:
- Current price: $S^{(1)}(0)=100$.
- Price at time 1: $S^{(1)}(1)$, which is either 50 or 150 .
- Financial world:

A combined financial-biometrical world

The financial world

- Risk-free bond:
- Interest rate $r=0$.
- Stock:
- Current price: $S^{(1)}(0)=100$.
- Price at time 1: $S^{(1)}(1)$, which is either 50 or 150 .
- Financial world:

$$
\left(\Omega^{(1)}, \mathcal{F}^{(1)}, \mathbb{P}^{(1)}\right)
$$

- Universe:

$$
\Omega^{(1)}=\{50,150\}
$$

A combined financial-biometrical world

The financial world

- Risk-free bond:
- Interest rate $r=0$.
- Stock:
- Current price: $S^{(1)}(0)=100$.
- Price at time 1: $S^{(1)}(1)$, which is either 50 or 150 .
- Financial world:

$$
\left(\Omega^{(1)}, \mathcal{F}^{(1)}, \mathbb{P}^{(1)}\right)
$$

- Universe:

$$
\Omega^{(1)}=\{50,150\}
$$

- Real-world probabilities

A combined financial-biometrical world

The financial world

- Risk-free bond:
- Interest rate $r=0$.
- Stock:
- Current price: $S^{(1)}(0)=100$.
- Price at time 1: $S^{(1)}(1)$, which is either 50 or 150 .
- Financial world:

$$
\left(\Omega^{(1)}, \mathcal{F}^{(1)}, \mathbb{P}^{(1)}\right)
$$

- Universe:

$$
\Omega^{(1)}=\{50,150\}
$$

- Real-world probabilities:

$$
\mathbb{P}^{(1)}[50]>0 \quad \text { and } \quad \mathbb{P}^{(1)}[150]>0
$$

A combined financial-biometrical world

The biometrical world

- Survival index of a given population:
- $I(1)=$ value of survival index at time 1
- Biometrical world:

A combined financial-biometrical world

The biometrical world

- Survival index of a given population:
- $\mathcal{I}(1)=$ value of survival index at time 1 .

- Biometrical world:

A combined financial-biometrical world

The biometrical world

- Survival index of a given population:
- $\mathcal{I}(1)=$ value of survival index at time 1 .
- $\mathcal{I}(1)=0$: 'few' survive.
- Biometrical world:

A combined financial-biometrical world

The biometrical world

- Survival index of a given population:
- $\mathcal{I}(1)=$ value of survival index at time 1.
- $\mathcal{I}(1)=0$: 'few' survive.
- $\mathcal{I}(1)=1$: 'many' survive.
- Biometrical world:

A combined financial-biometrical world

The biometrical world

- Survival index of a given population:
- $\mathcal{I}(1)=$ value of survival index at time 1.
- $\mathcal{I}(1)=0$: 'few' survive.
- $\mathcal{I}(1)=1$: 'many' survive.
- Biometrical world:

$$
\left(\Omega^{(2)}, \mathcal{F}^{(2)}, \mathbb{P}^{(2)}\right)
$$

- Universe:

- Real-world probabilities:

A combined financial-biometrical world

The biometrical world

- Survival index of a given population:
- $\mathcal{I}(1)=$ value of survival index at time 1 .
- $\mathcal{I}(1)=0$: 'few' survive.
- $\mathcal{I}(1)=1$: 'many' survive.
- Biometrical world:

$$
\left(\Omega^{(2)}, \mathcal{F}^{(2)}, \mathbb{P}^{(2)}\right)
$$

- Universe:

$$
\Omega^{(2)}=\{0,1\}
$$

- Real-world probabilities:

A combined financial-biometrical world

The biometrical world

- Survival index of a given population:
- $\mathcal{I}(1)=$ value of survival index at time 1 .
- $\mathcal{I}(1)=0$: 'few' survive.
- $\mathcal{I}(1)=1$: 'many' survive.
- Biometrical world:

$$
\left(\Omega^{(2)}, \mathcal{F}^{(2)}, \mathbb{P}^{(2)}\right)
$$

- Universe:

$$
\Omega^{(2)}=\{0,1\} .
$$

- Real-world probabilities:

$$
\mathbb{P}^{(2)}[0]>0 \quad \text { and } \quad \mathbb{P}^{(2)}[1]>0
$$

A combined financial-biometrical world

The global world

- Global world:

$$
(\Omega, \mathcal{F}, \mathbb{P})
$$

- Universe:

- Real-world probabilities:

A combined financial-biometrical world

The global world

- Global world:

$$
(\Omega, \mathcal{F}, \mathbb{P})
$$

- Universe:

$$
\Omega=\Omega^{(1)} \times \Omega^{(2)}=\{(50,0),(50,1),(150,0),(150,1)\}
$$

- Real-world probabilities:

A combined financial-biometrical world

The global world

- Global world:

$$
(\Omega, \mathcal{F}, \mathbb{P})
$$

- Universe:

$$
\Omega=\Omega^{(1)} \times \Omega^{(2)}=\{(50,0),(50,1),(150,0),(150,1)\}
$$

- Real-world probabilities:
- Financial and biometrical risks are assumed to be independent:

- This means:

A combined financial-biometrical world

The global world

- Global world:

$$
(\Omega, \mathcal{F}, \mathbb{P})
$$

- Universe:

$$
\Omega=\Omega^{(1)} \times \Omega^{(2)}=\{(50,0),(50,1),(150,0),(150,1)\}
$$

- Real-world probabilities:
- Financial and biometrical risks are assumed to be independent:

$$
\mathbb{P} \equiv \mathbb{P}^{(1)} \times \mathbb{P}^{(2)}
$$

- This means:

A combined financial-biometrical world

The global world

- Global world:

$$
(\Omega, \mathcal{F}, \mathbb{P})
$$

- Universe:

$$
\Omega=\Omega^{(1)} \times \Omega^{(2)}=\{(50,0),(50,1),(150,0),(150,1)\}
$$

- Real-world probabilities:
- Financial and biometrical risks are assumed to be independent:

$$
\mathbb{P} \equiv \mathbb{P}^{(1)} \times \mathbb{P}^{(2)}
$$

- This means:

$$
\left\{\begin{array}{l}
\mathbb{P}[50,0]=\mathbb{P}^{(1)}[50] \times \mathbb{P}^{(2)}[0]>0 \\
\mathbb{P}[50,1]=\mathbb{P}^{(1)}[50] \times \mathbb{P}^{(2)}[1]>0 \\
\mathbb{P}[150,0]=\mathbb{P}^{(1)}[150] \times \mathbb{P}^{(2)}[0]>0 \\
\mathbb{P}[150,1]=\mathbb{P}^{(1)}[150] \times \mathbb{P}^{(2)}[1]>0
\end{array}\right.
$$

A combined financial-biometrical world

Equivalent martingale measures

- Supppose that the global world $(\Omega, \mathcal{F}, \mathbb{P})$ is home to a market of tradable assets.
- \mathbb{Q} is an equivalent martingale measure if:
- Fundamental Theorems of Asset Pricing

A combined financial-biometrical world

Equivalent martingale measures

- Supppose that the global world $(\Omega, \mathcal{F}, \mathbb{P})$ is home to a market of tradable assets.
- \mathbb{Q} is an equivalent martingale measure if:
- \mathbb{Q} is a probability measure on (Ω, \mathcal{F})
- \mathbb{Q} and \mathbb{P} are equivalent.
- The current price $S(0)$ of any tradable asset with pay-off $S(1)$ at time 1 can be expressed as

- Fundamental Theorems of Asset Pricing:

A combined financial-biometrical world

Equivalent martingale measures

- Supppose that the global world $(\Omega, \mathcal{F}, \mathbb{P})$ is home to a market of tradable assets.
- \mathbb{Q} is an equivalent martingale measure if:
- \mathbb{Q} is a probability measure on (Ω, \mathcal{F}).
- \mathbb{Q} and \mathbb{P} are equivalent.
- The current price $S(0)$ of any tradable asset with pay-off $S(1)$ at time 1 can be expressed as

- Fundamental Theorems of Asset Pricing:

A combined financial-biometrical world

Equivalent martingale measures

- Supppose that the global world $(\Omega, \mathcal{F}, \mathbb{P})$ is home to a market of tradable assets.
- \mathbb{Q} is an equivalent martingale measure if:
- Q is a probability measure on (Ω, \mathcal{F}).
- \mathbb{Q} and \mathbb{P} are equivalent.

The current price $S(0)$ of any tradable asset with pay-off $S(1)$ at time 1 can be expressed as

- Fundamental Theorems of Asset Pricing:

A combined financial-biometrical world

Equivalent martingale measures

- Supppose that the global world $(\Omega, \mathcal{F}, \mathbb{P})$ is home to a market of tradable assets.
- \mathbb{Q} is an equivalent martingale measure if:
- \mathbb{Q} is a probability measure on (Ω, \mathcal{F}).
- \mathbb{Q} and \mathbb{P} are equivalent.
- The current price $S(0)$ of any tradable asset with pay-off $S(1)$ at time 1 can be expressed as

$$
S(0)=\mathbb{E}^{\mathrm{Q}}[S(1)]
$$

- Fundamental Theorems of Asset Pricing:

A combined financial-biometrical world

Equivalent martingale measures

- Supppose that the global world $(\Omega, \mathcal{F}, \mathbb{P})$ is home to a market of tradable assets.
- \mathbb{Q} is an equivalent martingale measure if:
- \mathbb{Q} is a probability measure on (Ω, \mathcal{F}).
- \mathbb{Q} and \mathbb{P} are equivalent.
- The current price $S(0)$ of any tradable asset with pay-off $S(1)$ at time 1 can be expressed as

$$
S(0)=\mathbb{E}^{\mathrm{Q}}[S(1)]
$$

- Fundamental Theorems of Asset Pricing:
- The market is arbitrage-free if and only if there exists an
equivalent martingale measure \mathbb{Q}.
- The arbitrage-free market is complete if and only if there exists
a unique equivalent martingale measure \mathbb{Q}.

A combined financial-biometrical world

Equivalent martingale measures

- Supppose that the global world $(\Omega, \mathcal{F}, \mathbb{P})$ is home to a market of tradable assets.
- \mathbb{Q} is an equivalent martingale measure if:
- \mathbb{Q} is a probability measure on (Ω, \mathcal{F}).
- \mathbb{Q} and \mathbb{P} are equivalent.
- The current price $S(0)$ of any tradable asset with pay-off $S(1)$ at time 1 can be expressed as

$$
S(0)=\mathbb{E}^{\mathrm{Q}}[S(1)]
$$

- Fundamental Theorems of Asset Pricing:
- The market is arbitrage-free if and only if there exists an equivalent martingale measure \mathbf{Q}.
- The arbitrage-free market is complete if and only if there exists
a unique equivalent martingale measure \mathbb{Q}.

A combined financial-biometrical world

Equivalent martingale measures

- Supppose that the global world $(\Omega, \mathcal{F}, \mathbb{P})$ is home to a market of tradable assets.
- \mathbb{Q} is an equivalent martingale measure if:
- \mathbb{Q} is a probability measure on (Ω, \mathcal{F}).
- \mathbb{Q} and \mathbb{P} are equivalent.
- The current price $S(0)$ of any tradable asset with pay-off $S(1)$ at time 1 can be expressed as

$$
S(0)=\mathbb{E}^{\mathrm{Q}}[S(1)]
$$

- Fundamental Theorems of Asset Pricing:
- The market is arbitrage-free if and only if there exists an equivalent martingale measure \mathbf{Q}.
- The arbitrage-free market is complete if and only if there exists a unique equivalent martingale measure \mathbf{Q}.

A combined financial-biometrical world

Equivalent martingale measures

- Projection of \mathbb{Q} on the financial world: $\mathbb{Q}^{(1)}$.

$$
\left\{\begin{array}{l}
\mathbb{Q}^{(1)}[50]=\mathbb{Q}[50,0]+\mathbb{Q}[50,1] \\
\mathbb{Q}^{(1)}[150]=\mathbb{Q}[150,0]+\mathbb{Q}[150,1]
\end{array}\right.
$$

- Projection of \mathbb{Q} on the biometrical world: $\mathbb{Q}^{(2)}$
- The product measure $\mathbb{Q}^{(1)} \times \mathbb{Q}^{(2)}$

- Financial and biometrical risks are independent under \mathbb{Q}

A combined financial-biometrical world

Equivalent martingale measures

- Projection of \mathbb{Q} on the financial world: $\mathbb{Q}^{(1)}$.

$$
\left\{\begin{array}{l}
\mathbb{Q}^{(1)}[50]=\mathbb{Q}[50,0]+\mathbb{Q}[50,1] \\
\mathbb{Q}^{(1)}[150]=\mathbb{Q}[150,0]+\mathbb{Q}[150,1]
\end{array}\right.
$$

- Projection of \mathbb{Q} on the biometrical world: $\mathbb{Q}^{(2)}$.
- The product measure Q

- Financial and biometrical risks are independent under \mathbb{Q}

A combined financial-biometrical world

Equivalent martingale measures

- Projection of \mathbb{Q} on the financial world: $\mathbb{Q}^{(1)}$.

$$
\left\{\begin{array}{l}
\mathbb{Q}^{(1)}[50]=\mathbb{Q}[50,0]+\mathbb{Q}[50,1] \\
\mathbb{Q}^{(1)}[150]=\mathbb{Q}[150,0]+\mathbb{Q}[150,1]
\end{array}\right.
$$

- Projection of \mathbb{Q} on the biometrical world: $\mathbb{Q}^{(2)}$.
- The product measure $\mathbb{Q}^{(1)} \times \mathbb{Q}^{(2)}$:

$$
\left(\mathbb{Q}^{(1)} \times \mathbb{Q}^{(2)}\right)\left[\omega_{1}, \omega_{2}\right]=\mathbb{Q}^{(1)}\left[\omega_{1}\right] \times \mathbb{Q}^{(2)}\left[\omega_{2}\right]
$$

- Financial and biometrical risks are independent under \mathbb{Q}

A combined financial-biometrical world

Equivalent martingale measures

- Projection of \mathbb{Q} on the financial world: $\mathbb{Q}^{(1)}$.

$$
\left\{\begin{array}{l}
\mathbb{Q}^{(1)}[50]=\mathbb{Q}[50,0]+\mathbb{Q}[50,1] \\
\mathbb{Q}^{(1)}[150]=\mathbb{Q}[150,0]+\mathbb{Q}[150,1]
\end{array}\right.
$$

- Projection of \mathbb{Q} on the biometrical world: $\mathbb{Q}^{(2)}$.
- The product measure $\mathbb{Q}^{(1)} \times \mathbb{Q}^{(2)}$:

$$
\left(\mathbb{Q}^{(1)} \times \mathbb{Q}^{(2)}\right)\left[\omega_{1}, \omega_{2}\right]=\mathbb{Q}^{(1)}\left[\omega_{1}\right] \times \mathbb{Q}^{(2)}\left[\omega_{2}\right]
$$

- Financial and biometrical risks are independent under \mathbb{Q} if

$$
\mathbf{Q} \equiv \mathbb{Q}^{(1)} \times \mathbb{Q}^{(2)}
$$

A combined financial-biometrical world

An incomplete market with 2 purely financial securities

- Traded securities:
- Risk-free bond: $r=0$.
- Stock:
- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . . satisfying

$$
\left\{\begin{array}{l}
\mathbb{E}^{\mathbb{Q}}\left[S^{(1)}(1)\right]=100 \\
\mathbb{Q}[50,0]+\mathbb{Q}[150,0]+\mathbb{Q}[50,1]+\mathbb{Q}[150,1]=1
\end{array}\right.
$$

- Equivalent with: Find positive $\mathbb{Q}[50,0]$, . . satisfying

A combined financial-biometrical world

An incomplete market with 2 purely financial securities

- Traded securities:
- Risk-free bond: $r=0$.
- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . . satisfying

- Equivalent with: Find positive $\mathbb{Q}[50,0]$, . . s satisfying

A combined financial-biometrical world

An incomplete market with 2 purely financial securities

- Traded securities:
- Risk-free bond: $r=0$.
- Stock:
- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . . satisfying

- Equivalent with: Find positive $\mathbb{Q}[50,0]$, . . s satisfying

A combined financial-biometrical world

An incomplete market with 2 purely financial securities

- Traded securities:
- Risk-free bond: $r=0$.
- Stock:
- Current price: $S^{(1)}(0)=100$.
- Pay-off at time 1: $S^{(1)}(1) \in\{50,150\}$
- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . . satisfying

- Equivalent with: Find positive $\mathbb{Q}[50,0]$, . . satisfying

A combined financial-biometrical world

An incomplete market with 2 purely financial securities

- Traded securities:
- Risk-free bond: $r=0$.
- Stock:
- Current price: $S^{(1)}(0)=100$.
- Pay-off at time 1: $S^{(1)}(1) \in\{50,150\}$
> Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0], \ldots$ satisfying

- Equivalent with: Find positive $\mathbb{Q}[50,0]$, . . satisfying

A combined financial-biometrical world

An incomplete market with 2 purely financial securities

- Traded securities:
- Risk-free bond: $r=0$.
- Stock:
- Current price: $S^{(1)}(0)=100$.
- Pay-off at time 1: $S^{(1)}(1) \in\{50,150\}$.
- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, ... satisfying

$$
\left\{\begin{array}{l}
\mathbb{E}^{\mathrm{Q}}\left[S^{(1)}(1)\right]=100 \\
\mathbb{Q}[50,0]+\mathbb{Q}[150,0]+\mathbb{Q}[50,1]+\mathbb{Q}[150,1]=1
\end{array}\right.
$$

- Equivalent with: Find positive Q [50, 0]

A combined financial-biometrical world

An incomplete market with 2 purely financial securities

- Traded securities:
- Risk-free bond: $r=0$.
- Stock:
- Current price: $S^{(1)}(0)=100$.
- Pay-off at time 1: $S^{(1)}(1) \in\{50,150\}$.
- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, ... satisfying

$$
\left\{\begin{array}{l}
\mathbb{E}^{\mathrm{Q}}\left[S^{(1)}(1)\right]=100 \\
\mathbb{Q}[50,0]+\mathbb{Q}[150,0]+\mathbb{Q}[50,1]+\mathbb{Q}[150,1]=1
\end{array}\right.
$$

- Equivalent with: Find positive $\mathbb{Q}[50,0]$, ... satisfying

$$
\left\{\begin{array}{l}
Q^{(1)}[50]=0.5 \\
\mathbb{Q}^{(1)}[150]=0.5
\end{array}\right.
$$

A combined financial-biometrical world

An incomplete market with 2 purely financial securities

- Two particular pricing measures:

$$
\left\{\begin{array} { l l }
{ \overline { \mathrm { Q } } [5 0 , 0] } & { = 0 . 2 } \\
{ \overline { \mathrm { Q } } [1 5 0 , 0] } & { = 0 . 1 } \\
{ \overline { \mathrm { Q } } [5 0 , 1] } & { = 0 . 3 } \\
{ \overline { \mathrm { Q } } [1 5 0 , 1] } & { = 0 . 4 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[50,0] & =0.15 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[150,0] & =0.15 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[50,1] & =0.35 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[150,1] & =0.35
\end{array}\right.\right.
$$

A combined financial-biometrical world

An incomplete market with 2 purely financial securities

- Two particular pricing measures:

$$
\left\{\begin{array} { l l }
{ \overline { \mathrm { Q } } [5 0 , 0] } & { = 0 . 2 } \\
{ \overline { \mathrm { Q } } [1 5 0 , 0] } & { = 0 . 1 } \\
{ \overline { \overline { Q } } [5 0 , 1] } & { = 0 . 3 } \\
{ \overline { \mathrm { Q } } [1 5 0 , 1] } & { = 0 . 4 }
\end{array} \text { and } \quad \left\{\begin{array}{l}
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[50,0]=0.15 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\bar{Q}}^{(2)}[150,0]=0.15 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[50,1]=0.35 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[150,1]=0.35
\end{array}\right.\right.
$$

- Conclusions:
- The market is arbitrage-free but incomplete.
- In this market, there are pricing measures:

A combined financial-biometrical world

An incomplete market with 2 purely financial securities

- Two particular pricing measures:

$$
\left\{\begin{array} { l l }
{ \overline { \mathbb { Q } } [5 0 , 0] } & { = 0 . 2 } \\
{ \overline { \mathbb { Q } } [1 5 0 , 0] } & { = 0 . 1 } \\
{ \overline { \mathrm { Q } } [5 0 , 1] } & { = 0 . 3 } \\
{ \overline { \mathbb { Q } } [1 5 0 , 1] } & { = 0 . 4 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[50,0] & =0.15 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[150,0] & =0.15 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[50,1] & =0.35 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[150,1] & =0.35
\end{array}\right.\right.
$$

- Conclusions:
- The market is arbitrage-free but incomplete.

A combined financial-biometrical world

An incomplete market with 2 purely financial securities

- Two particular pricing measures:

$$
\left\{\begin{array} { l l }
{ \overline { \mathbb { Q } } [5 0 , 0] } & { = 0 . 2 } \\
{ \overline { \mathbb { Q } } [1 5 0 , 0] } & { = 0 . 1 } \\
{ \overline { \mathbb { Q } } [5 0 , 1] } & { = 0 . 3 } \\
{ \overline { \mathbb { Q } } [1 5 0 , 1] } & { = 0 . 4 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
\overline{\mathbb{Q}}^{(1)} \times \overline{\mathbb{Q}}^{(2)}[50,0] & =0.15 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[150,0] & =0.15 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[50,1] & =0.35 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathbb{Q}}^{(2)}[150,1] & =0.35
\end{array}\right.\right.
$$

- Conclusions:
- The market is arbitrage-free but incomplete.
- In this market, there are pricing measures:

A combined financial-biometrical world

An incomplete market with 2 purely financial securities

- Two particular pricing measures:

$$
\left\{\begin{array} { l l }
{ \overline { \mathbb { Q } } [5 0 , 0] } & { = 0 . 2 } \\
{ \overline { \mathbb { Q } } [1 5 0 , 0] } & { = 0 . 1 } \\
{ \overline { \overline { Q } } [5 0 , 1] } & { = 0 . 3 } \\
{ \overline { \mathbb { Q } } [1 5 0 , 1] } & { = 0 . 4 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[50,0] & =0.15 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[150,0] & =0.15 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[50,1] & =0.35 \\
\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}[150,1] & =0.35
\end{array}\right.\right.
$$

- Conclusions:
- The market is arbitrage-free but incomplete.
- In this market, there are pricing measures:
- which maintain the independency property: $\overline{\mathbb{Q}}^{(1)} \times \overline{\mathbf{Q}}^{(2)}$,

A combined financial-biometrical world

An incomplete market with 2 purely financial securities

- Two particular pricing measures:

$$
\left\{\begin{array} { l l }
{ \overline { \mathbb { Q } } [5 0 , 0] } & { = 0 . 2 } \\
{ \overline { \mathbb { Q } } [1 5 0 , 0] } & { = 0 . 1 } \\
{ \overline { \mathbb { Q } } [5 0 , 1] } & { = 0 . 3 } \\
{ \overline { \mathbb { Q } } [1 5 0 , 1] } & { = 0 . 4 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
\overline{\mathbf{Q}}^{(1)} \times \overline{\mathbf{Q}}^{(2)}[50,0] & =0.15 \\
\overline{\mathbf{Q}}^{(1)} \times \overline{\mathbf{Q}}^{(2)}[150,0] & =0.15 \\
\overline{\mathbf{Q}}^{(1)} \times \overline{\mathbf{Q}}^{(2)}[50,1] & =0.35 \\
\overline{\mathbf{Q}}^{(1)} \times \overline{\mathbf{Q}}^{(2)}[150,1] & =0.35
\end{array}\right.\right.
$$

- Conclusions:
- The market is arbitrage-free but incomplete.
- In this market, there are pricing measures:
- which maintain the independency property: $\overline{\mathbb{Q}}^{(1)} \times \overline{\mathbf{Q}}^{(2)}$,
- which do not maintain the independence property: $\overline{\mathbf{Q}}$.

A combined financial-biometrical world

An incomplete market with 2 purely financial and 1 purely biometrical security

- Traded securities:
- Risk-free bond: $r=0$.
- Stock:
- Biometrical security:
- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . satisfying

A combined financial-biometrical world

An incomplete market with 2 purely financial and 1 purely biometrical security

- Traded securities:
- Risk-free bond: $r=0$.
- Biometrical security:
- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . . satisfying

A combined financial-biometrical world

An incomplete market with 2 purely financial and 1 purely biometrical security

- Traded securities:
- Risk-free bond: $r=0$.
- Stock: $S^{(1)}$.
- Biometrical security:
- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . satisfying

A combined financial-biometrical world

An incomplete market with 2 purely financial and 1 purely biometrical security

- Traded securities:
- Risk-free bond: $r=0$.
- Stock: $S^{(1)}$.
- Biometrical security:

```
* Current price: S S'(0)=70
- Pay-off at time 1:
```

```
S(2)(1)}=100\times\mathcal{I}(1
```

- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . satisfying

A combined financial-biometrical world

An incomplete market with 2 purely financial and 1 purely biometrical security

- Traded securities:
- Risk-free bond: $r=0$.
- Stock: $S^{(1)}$.
- Biometrical security:
- Current price: $S^{(2)}(0)=70$.
- Pay-off at time 1

- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . satisfying

A combined financial-biometrical world

An incomplete market with 2 purely financial and 1 purely biometrical security

- Traded securities:
- Risk-free bond: $r=0$.
- Stock: $S^{(1)}$.
- Biometrical security:
- Current price: $S^{(2)}(0)=70$.
- Pay-off at time 1:

$$
S^{(2)}(1)=100 \times \mathcal{I}(1)
$$

- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . satisfying

A combined financial-biometrical world

An incomplete market with 2 purely financial and 1 purely biometrical security

- Traded securities:
- Risk-free bond: $r=0$.
- Stock: $S^{(1)}$.
- Biometrical security:
- Current price: $S^{(2)}(0)=70$.
- Pay-off at time 1 :

$$
S^{(2)}(1)=100 \times \mathcal{I}(1)
$$

- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, ... satisfying

$$
\left\{\begin{array}{l}
\mathbb{E}^{\mathrm{Q}}\left[S^{(1)}(1)\right]=100 \\
\mathbb{E}^{\mathbb{Q}}\left[S^{(2)}(1)\right]=70 \\
\mathbb{Q}[50,0]+\mathbb{Q}[150,0]+\mathbb{Q}[50,1]+\mathbb{Q}[150,1]=1
\end{array}\right.
$$

A combined financial-biometrical world

An incomplete market with 2 purely financial and 1 purely biometrical security

- Equivalent with: Find positive $\mathbb{Q}[50,0]$, ... satisfying

$$
\left\{\begin{array}{l}
\mathbb{Q}^{(1)}[50]=0.5 \\
\mathbb{Q}^{(1)}[150]=0.5 \\
\mathbb{Q}^{(2)}[0]=0.3 \\
\mathbb{Q}^{(2)}[1]=0.7
\end{array}\right.
$$

- $\overline{\mathbf{Q}}$ and $\overline{\mathbb{Q}}^{(1)} \times \overline{\mathbb{Q}}^{(2)}$ (defined earlier) are 2 particular pricing measures.
- Conclusions:

A combined financial-biometrical world

An incomplete market with 2 purely financial and 1 purely biometrical security

- Equivalent with: Find positive $\mathbb{Q}[50,0]$, ... satisfying

$$
\left\{\begin{array}{l}
\mathbb{Q}^{(1)}[50]=0.5 \\
\mathbf{Q}^{(1)}[150]=0.5 \\
\mathbb{Q}^{(2)}[0]=0.3 \\
\mathbf{Q}^{(2)}[1]=0.7
\end{array}\right.
$$

- $\overline{\mathbb{Q}}$ and $\overline{\mathbb{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}$ (defined earlier) are 2 particular pricing measures.
- Conclusions:

A combined financial-biometrical world

An incomplete market with 2 purely financial and 1 purely biometrical security

- Equivalent with: Find positive $\mathbb{Q}[50,0]$, ... satisfying

$$
\left\{\begin{array}{l}
\mathbb{Q}^{(1)}[50]=0.5 \\
\mathbb{Q}^{(1)}[150]=0.5 \\
\mathbb{Q}^{(2)}[0]=0.3 \\
\mathbb{Q}^{(2)}[1]=0.7
\end{array}\right.
$$

- $\overline{\mathrm{Q}}$ and $\overline{\mathrm{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}$ (defined earlier) are 2 particular pricing measures.
- Conclusions:
 independence property.

A combined financial-biometrical world

An incomplete market with 2 purely financial and 1 purely biometrical security

- Equivalent with: Find positive $\mathbb{Q}[50,0]$, ... satisfying

$$
\left\{\begin{array}{l}
\mathbb{Q}^{(1)}[50]=0.5 \\
\mathbf{Q}^{(1)}[150]=0.5 \\
\mathbb{Q}^{(2)}[0]=0.3 \\
\mathbf{Q}^{(2)}[1]=0.7
\end{array}\right.
$$

- $\overline{\mathbf{Q}}$ and $\overline{\mathbf{Q}}^{(1)} \times \overline{\mathbf{Q}}^{(2)}$ (defined earlier) are 2 particular pricing measures.
- Conclusions:
- The market is arbitrage-free but incomplete.
 independence property.

A combined financial-biometrical world

An incomplete market with 2 purely financial and 1 purely biometrical security

- Equivalent with: Find positive $\mathbb{Q}[50,0]$, ... satisfying

$$
\left\{\begin{array}{l}
\mathbb{Q}^{(1)}[50]=0.5 \\
\mathbb{Q}^{(1)}[150]=0.5 \\
\mathbb{Q}^{(2)}[0]=0.3 \\
\mathbb{Q}^{(2)}[1]=0.7
\end{array}\right.
$$

- $\overline{\mathbf{Q}}$ and $\overline{\mathbf{Q}}^{(1)} \times \overline{\mathbf{Q}}^{(2)}$ (defined earlier) are 2 particular pricing measures.
- Conclusions:
- The market is arbitrage-free but incomplete.
- Under $\overline{\mathbb{Q}}$, the independence property is not maintained. independence property.

A combined financial-biometrical world

An incomplete market with 2 purely financial and 1 purely biometrical security

- Equivalent with: Find positive $\mathbb{Q}[50,0]$, ... satisfying

$$
\left\{\begin{array}{l}
\mathbb{Q}^{(1)}[50]=0.5 \\
\mathbb{Q}^{(1)}[150]=0.5 \\
\mathbb{Q}^{(2)}[0]=0.3 \\
\mathbb{Q}^{(2)}[1]=0.7
\end{array}\right.
$$

- $\overline{\mathbf{Q}}$ and $\overline{\mathbb{Q}}^{(1)} \times \overline{\mathrm{Q}}^{(2)}$ (defined earlier) are 2 particular pricing measures.
- Conclusions:
- The market is arbitrage-free but incomplete.
- Under $\overline{\mathbb{Q}}$, the independence property is not maintained.
- $\overline{\mathbb{Q}}^{(1)} \times \overline{\mathbb{Q}}^{(2)}$ is the unique pricing measure which maintains the independence property.

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:

```
* Risk-free bond: r = 0.
- Stock:
- Biometrical security: S(2)
* Combined security:
```

- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . . satisfying

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Biometrical security
- Combined security:
- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . . satisfying

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Stock: $S^{(1)}$.
- Biometrical security
- Combined security:
- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . . satisfying

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Stock: $S^{(1)}$.
- Biometrical security: $S^{(2)}$.
- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . . satisfying

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Stock: $S^{(1)}$.
- Biometrical security: $S^{(2)}$.
- Combined security:

- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . . satisfying

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Stock: $S^{(1)}$.
- Biometrical security: $S^{(2)}$.
- Combined security:
- Current price: $\mathbf{S}(\mathbf{0}) \in(10,25)$.

- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . satisfying

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Stock: $S^{(1)}$.
- Biometrical security: $S^{(2)}$.
- Combined security:
- Current price: $\mathbf{S}(\mathbf{0}) \in(10,25)$.
- Pay-off at time 1:

$$
S(1)=\left(100-S^{(1)}(1)\right)_{+} \times \mathcal{I}(1)
$$

- Determining \mathbb{Q} : Find positive $\mathbb{Q}[50,0]$, . . . satisfying

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Stock: $S^{(1)}$.
- Biometrical security: $S^{(2)}$.
- Combined security:
- Current price: $\mathbf{S}(\mathbf{0}) \in(10,25)$.
- Pay-off at time 1 :

$$
S(1)=\left(100-S^{(1)}(1)\right)_{+} \times \mathcal{I}(1)
$$

- Determining Q: Find positive $\mathbb{Q}[50,0]$, ... satisfying

$$
\left\{\begin{array}{l}
\mathbb{E}^{\mathrm{Q}}\left[S^{(1)}(1)\right]=100 \\
\mathbb{E}^{\mathrm{Q}}\left[S^{(2)}(1)\right]=70 \\
\mathbb{E}^{\mathrm{Q}}[S(1)]=S(0) \\
\mathbb{Q}[50,0]+\mathbb{Q}[150,0]+\mathrm{Q}[50,1]+\mathrm{Q}[150,1]=1
\end{array}\right.
$$

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Unique pricing measure $\widetilde{\mathbb{Q}}$:

$$
\left\{\begin{array}{l}
\widetilde{\mathbb{Q}}[(50,0)]=\frac{25-S(0)}{50} \\
\widetilde{\mathbb{Q}}[(150,0)]=\frac{-10+S(0)}{50} \\
\widetilde{\mathbb{Q}}[(50,1)]=\frac{S(0)}{50} \\
\widetilde{\mathbb{Q}}[(150,1)]=\frac{35-S(0)}{50}
\end{array}\right.
$$

- The market is arbitrage-free and complete.
- The unique pricing measure maintains the independence property if and only if $S(0)=17.5$.
- In case $S(0) \notin(10,25)$: the market is not arbitrage-free.
- Conclusion:

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Unique pricing measure $\widetilde{\mathbb{Q}}$:

$$
\left\{\begin{array}{l}
\widetilde{\mathbb{Q}}[(50,0)]=\frac{25-S(0)}{50} \\
\widetilde{\mathbb{Q}}[(150,0)]=\frac{-10+S(0)}{50} \\
\widetilde{\mathbb{Q}}[(50,1)]=\frac{S(0)}{50} \\
\widetilde{\mathbb{Q}}[(150,1)]=\frac{35-S(0)}{50}
\end{array}\right.
$$

- The market is arbitrage-free and complete.
- The unique pricing measure maintains the independence
property if and only if $S(0)=17.5$.
- In case $S(0) \notin(10,25)$: the market is not arbitrage-free.
- Conclusion:

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Unique pricing measure $\widetilde{\mathbb{Q}}$:

$$
\left\{\begin{array}{l}
\widetilde{\mathbb{Q}}[(50,0)]=\frac{25-S(0)}{50} \\
\widetilde{\mathbb{Q}}[(150,0)]=\frac{-10+S(0)}{50} \\
\widetilde{\mathbb{Q}}[(50,1)]=\frac{S(0)}{50} \\
\widetilde{\mathbb{Q}}[(150,1)]=\frac{35-S(0)}{50}
\end{array}\right.
$$

- The market is arbitrage-free and complete.
- The unique pricing measure maintains the independence property if and only if $S(0)=17.5$.
- Conclusion:

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Unique pricing measure $\widetilde{\mathbb{Q}}$:

$$
\left\{\begin{array}{l}
\widetilde{\mathbb{Q}}[(50,0)]=\frac{25-S(0)}{50} \\
\widetilde{\mathbb{Q}}[(150,0)]=\frac{-10+S(0)}{50} \\
\widetilde{\mathbb{Q}}[(50,1)]=\frac{S(0)}{50} \\
\widetilde{\mathbb{Q}}[(150,1)]=\frac{35-S(0)}{50}
\end{array}\right.
$$

- The market is arbitrage-free and complete.
- The unique pricing measure maintains the independence property if and only if $S(0)=17.5$.
- In case $S(0) \notin(10,25)$: the market is not arbitrage-free.
- Conclusion:

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Unique pricing measure $\widetilde{\mathbb{Q}}$:

$$
\left\{\begin{array}{l}
\widetilde{\mathbb{Q}}[(50,0)]=\frac{25-S(0)}{50} \\
\widetilde{\mathbb{Q}}[(150,0)]=\frac{-10+S(0)}{50} \\
\widetilde{\mathbb{Q}}[(50,1)]=\frac{S(0)}{50} \\
\widetilde{\mathbb{Q}}[(150,1)]=\frac{35-S(0)}{50}
\end{array}\right.
$$

- The market is arbitrage-free and complete.
- The unique pricing measure maintains the independence property if and only if $S(0)=17.5$.
- In case $S(0) \notin(10,25)$: the market is not arbitrage-free.
- Conclusion:

A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

- Unique pricing measure $\widetilde{\mathbb{Q}}$:

$$
\left\{\begin{array}{l}
\widetilde{\mathbb{Q}}[(50,0)]=\frac{25-S(0)}{50} \\
\widetilde{\mathbb{Q}}[(150,0)]=\frac{-10+S(0)}{50} \\
\widetilde{\mathbb{Q}}[(50,1)]=\frac{S(0)}{50} \\
\widetilde{\mathbb{Q}}[(150,1)]=\frac{35-S(0)}{50}
\end{array}\right.
$$

- The market is arbitrage-free and complete.
- The unique pricing measure maintains the independence property if and only if $S(0)=17.5$.
- In case $S(0) \notin(10,25)$: the market is not arbitrage-free.
- Conclusion:
- In an arbitrage-free and complete market, it may happen that the unique pricing measure does not maintain the independence property.

Another (simple) combined financial-biometrical world

The financial and the biometrical world

- Financial world:

$$
\left(\Omega^{(1)}, \mathcal{F}^{(1)}, \mathbb{P}^{(1)}\right)
$$

- Universe:

$$
\Omega^{(1)}=\{B, M, R\}
$$

- Real-world probabilities:

Another (simple) combined financial-biometrical world

The financial and the biometrical world

- Financial world:

$$
\left(\Omega^{(1)}, \mathcal{F}^{(1)}, \mathbb{P}^{(1)}\right)
$$

- Universe:

$$
\Omega^{(1)}=\{B, M, R\}
$$

- Booming economy, Moderate growth, Recession.
- Real-world probabilities:

Another (simple) combined financial-biometrical world

The financial and the biometrical world

- Financial world:

$$
\left(\Omega^{(1)}, \mathcal{F}^{(1)}, \mathbb{P}^{(1)}\right)
$$

- Universe:

$$
\Omega^{(1)}=\{B, M, R\}
$$

- Booming economy, Moderate growth, Recession.
- Real-world probabilities:

Another (simple) combined financial-biometrical world

The financial and the biometrical world

- Financial world:

$$
\left(\Omega^{(1)}, \mathcal{F}^{(1)}, \mathbb{P}^{(1)}\right)
$$

- Universe:

$$
\Omega^{(1)}=\{B, M, R\}
$$

- Booming economy, Moderate growth, Recession.
- Real-world probabilities:

$$
\mathbb{P}^{(1)}[B]>0, \mathbb{P}^{(1)}[M]>0 \text { and } \mathbb{P}^{(1)}[R]>0
$$

Another (simple) combined financial-biometrical world

The financial and the biometrical world

- Financial world:

$$
\left(\Omega^{(1)}, \mathcal{F}^{(1)}, \mathbb{P}^{(1)}\right)
$$

- Universe:

$$
\Omega^{(1)}=\{B, M, R\}
$$

- Booming economy, Moderate growth, Recession.
- Real-world probabilities:

$$
\mathbb{P}^{(1)}[B]>0, \mathbb{P}^{(1)}[M]>0 \text { and } \mathbb{P}^{(1)}[R]>0
$$

- Biometrical world: $\left(\Omega^{(2)}, \mathcal{F}^{(2)}, \mathbb{P}^{(2)}\right)$ as defined before.

Another combined financial-biometrical world

The global world

- Global world:

$$
(\Omega, \mathcal{F}, \mathbb{P})
$$

- Universe:

- Real-world probabilities:

Financial and biometrical risks are assumed to be independent:

$$
\mathbb{P} \equiv \mathbb{P}^{(1)} \times \mathbb{P}^{(2)}
$$

Another combined financial-biometrical world

The global world

- Global world:

$$
(\Omega, \mathcal{F}, \mathbb{P})
$$

- Universe:

$$
\Omega=\Omega^{(1)} \times \Omega^{(2)}
$$

- Real-world probabilities:

Financial and biometrical risks are assumed to be independent:
$\mathbb{P} \equiv \mathbb{P}^{(1)} \times \mathbb{P}^{(2)}$

Another combined financial-biometrical world

The global world

- Global world:

$$
(\Omega, \mathcal{F}, \mathbb{P})
$$

- Universe:

$$
\Omega=\Omega^{(1)} \times \Omega^{(2)}
$$

- Real-world probabilities:

Financial and biometrical risks are assumed to be independent:

$$
\mathbb{P} \equiv \mathbb{P}^{(1)} \times \mathbb{P}^{(2)}
$$

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Financial security: Current price: $S^{(1)}(0)=50$.
- Biometrical security: Current price: $S^{(2)}(0)=70$.
- Combined security: Current price: $\mathbf{S}(\mathbf{0}) \in(0,30)$.

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Financial security: Current price: $S^{(1)}(0)=50$.
- Biometrical security: Current price: $S^{(2)}(0)=70$.
- Combined security: Current price: $\mathbf{S}(\mathbf{0}) \in(0,30)$.

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Financial security: Current price: $S^{(1)}(0)=50$.
- Pay-off at time 1:

- Biometrical security: Current price: $S^{(2)}(0)=70$
- Combined security: Current price: $\mathbf{S}(\mathbf{0}) \in(0,30)$

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Financial security: Current price: $S^{(1)}(0)=50$.
- Pay-off at time 1:

$$
S^{(1)}(1)=\left\{\begin{array}{cl}
100, & \text { if } B \\
0, & \text { otherwise }
\end{array}\right.
$$

- Biometrical security: Current price: $S^{(2)}(0)=70$
- Combined security: Current price: $\mathbf{S}(\mathbf{0}) \in(0,30)$

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Financial security: Current price: $S^{(1)}(0)=50$.
- Pay-off at time 1 :

$$
S^{(1)}(1)=\left\{\begin{array}{cl}
100, & \text { if } B \\
0, & \text { otherwise }
\end{array}\right.
$$

- Biometrical security: Current price: $S^{(2)}(0)=70$.

- Combined security: Current price: $\mathbf{S}(\mathbf{0}) \in(0,30)$.

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Financial security: Current price: $S^{(1)}(0)=50$.
- Pay-off at time 1 :

$$
S^{(1)}(1)=\left\{\begin{array}{cl}
100, & \text { if } B \\
0, & \text { otherwise }
\end{array}\right.
$$

- Biometrical security: Current price: $S^{(2)}(0)=70$.
- Pay-off at time 1:

$$
S^{(2)}(1)=100 \times \mathcal{I}(1)
$$

- Combined security: Current price: $\mathbf{S}(\mathbf{0}) \in(0,30)$

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Financial security: Current price: $S^{(1)}(0)=50$.
- Pay-off at time 1 :

$$
S^{(1)}(1)=\left\{\begin{array}{cl}
100, & \text { if } B \\
0, & \text { otherwise }
\end{array}\right.
$$

- Biometrical security: Current price: $S^{(2)}(0)=70$.
- Pay-off at time 1:

$$
S^{(2)}(1)=100 \times \mathcal{I}(1)
$$

- Combined security: Current price: $\mathbf{S}(\mathbf{0}) \in(0,30)$.

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Traded securities:
- Risk-free bond: $r=0$.
- Financial security: Current price: $S^{(1)}(0)=50$.
- Pay-off at time 1:

$$
S^{(1)}(1)=\left\{\begin{array}{cl}
100, & \text { if } B \\
0, & \text { otherwise }
\end{array}\right.
$$

- Biometrical security: Current price: $S^{(2)}(0)=70$.
- Pay-off at time 1:

$$
S^{(2)}(1)=100 \times \mathcal{I}(1)
$$

- Combined security: Current price: $\mathbf{S}(\mathbf{0}) \in(0,30)$.
- Pay-off at time 1:

$$
S(1)=S^{(1)}(1) \times(1-\mathcal{I}(1))
$$

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Determining \mathbb{Q} : Find positive $\mathbb{Q}[B, 0], \ldots$ satisfying:

$$
\left\{\begin{array}{l}
\mathbb{E}^{\mathrm{Q}}\left[S^{(1)}(1)\right]=50 \\
\mathbb{E}^{\mathrm{Q}}\left[S^{(2)}(1)\right]=70 \\
\mathbb{E}^{\mathrm{Q}}[S(1)]=S(0) \\
\mathbb{Q}[B, 0]+\mathbb{Q}[M, 0]+\ldots+\mathbb{Q}[R, 1]=1
\end{array}\right.
$$

\Rightarrow Equivalent with: Find positive $\mathbb{Q}[B, 0], \ldots$ satisfying:

- Conclusion: the market is arbitrage-free and incomplete, provided $S(0) \in(0,30)$

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Determining \mathbb{Q} : Find positive $\mathbb{Q}[B, 0], \ldots$ satisfying:

$$
\left\{\begin{array}{l}
\mathbb{E}^{\mathrm{Q}}\left[S^{(1)}(1)\right]=50 \\
\mathbb{E}^{\mathrm{Q}}\left[S^{(2)}(1)\right]=70 \\
\mathbb{E}^{\mathrm{Q}}[S(1)]=S(0) \\
\mathbb{Q}[B, 0]+\mathbb{Q}[M, 0]+\ldots+\mathbb{Q}[R, 1]=1
\end{array}\right.
$$

- Equivalent with: Find positive $\mathbb{Q}[B, 0], \ldots$ satisfying:

$$
\left\{\begin{array}{l}
\mathbb{Q}[B, 0]=\frac{S(0)}{100} \\
\mathbb{Q}[B, 1]=\frac{50-S(0)}{100} \\
\mathbb{Q}[M, 0]+\mathbb{Q}[R, 0]=\frac{30-S(0)}{100} \\
\mathbb{Q}[M, 1]+\mathbb{Q}[R, 1]=\frac{20+S(0)}{100}
\end{array}\right.
$$

- Conclusion: the market is arbitrage-free and incomplete,

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Determining \mathbb{Q} : Find positive $\mathbb{Q}[B, 0], \ldots$ satisfying:

$$
\left\{\begin{array}{l}
\mathbb{E}^{\mathrm{Q}}\left[S^{(1)}(1)\right]=50 \\
\mathbb{E}^{\mathrm{Q}}\left[S^{(2)}(1)\right]=70 \\
\mathbb{E}^{\mathrm{Q}}[S(1)]=S(0) \\
\mathbb{Q}[B, 0]+\mathbb{Q}[M, 0]+\ldots+\mathbb{Q}[R, 1]=1
\end{array}\right.
$$

- Equivalent with: Find positive $\mathbb{Q}[B, 0], \ldots$ satisfying:

$$
\left\{\begin{array}{l}
\mathbb{Q}[B, 0]=\frac{S(0)}{100} \\
\mathbb{Q}[B, 1]=\frac{50-S(0)}{100} \\
\mathbb{Q}[M, 0]+\mathbb{Q}[R, 0]=\frac{30-S(0)}{100} \\
\mathbb{Q}[M, 1]+\mathbb{Q}[R, 1]=\frac{20+S(0)}{100}
\end{array}\right.
$$

- Conclusion: the market is arbitrage-free and incomplete, provided $S(0) \in(0,30)$.

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Pricing measures with the independence property:
- For any \mathbb{Q}, one has that

$$
\mathbb{Q}[B, 0]=\mathbb{Q}^{(1)}[B] \times \mathbb{Q}^{(2)}[0] \Longleftrightarrow S(0)=15
$$

- Conclusion:

Also in an arbitrage-free and incomplete market it may be impossible to find a pricing measure \mathbb{Q} that maintains the independence property.

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Pricing measures with the independence property:
- For any \mathbb{Q}, one has that

$$
\mathbb{Q}[B, 0]=\mathbb{Q}^{(1)}[B] \times \mathbb{Q}^{(2)}[0] \Longleftrightarrow S(0)=15
$$

- If $S(0) \neq 15$, there exists no pricing measure with the indepence property.
- If $S(0)=15$, several pricing measures with the independence property exist.
- Conclusion:

Also in an arbitrage-free and incomplete market it may be impossible to find a pricing measure \mathbb{Q} that maintains the independence property.

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Pricing measures with the independence property:
- For any \mathbb{Q}, one has that

$$
\mathbb{Q}[B, 0]=\mathbb{Q}^{(1)}[B] \times \mathbb{Q}^{(2)}[0] \Longleftrightarrow S(0)=15
$$

- If $S(0) \neq 15$, there exists no pricing measure with the indepence property.
\Rightarrow If $S(0)=15$, several pricing measures with the independence property exist.
- Conclusion:

Also in an arbitrage-free and incomplete market it may be impossible to find a pricing measure \mathbb{Q} that maintains the independence property.

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Pricing measures with the independence property:
- For any \mathbb{Q}, one has that

$$
\mathbb{Q}[B, 0]=\mathbb{Q}^{(1)}[B] \times \mathbb{Q}^{(2)}[0] \Longleftrightarrow S(0)=15
$$

- If $S(0) \neq 15$, there exists no pricing measure with the indepence property.
- If $S(0)=15$, several pricing measures with the independence property exist.
- Conclusion:

Also in an arbitrage-free and incomplete market it may be impossible to find a pricing measure \mathbb{Q} that maintains the independence property.

Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

- Pricing measures with the independence property:
- For any \mathbb{Q}, one has that

$$
\mathbb{Q}[B, 0]=\mathbb{Q}^{(1)}[B] \times \mathbb{Q}^{(2)}[0] \Longleftrightarrow S(0)=15
$$

- If $S(0) \neq 15$, there exists no pricing measure with the indepence property.
- If $S(0)=15$, several pricing measures with the independence property exist.
- Conclusion:

Also in an arbitrage-free and incomplete market it may be impossible to find a pricing measure \mathbb{Q} that maintains the independence property.

Part II - Introduction

Chosing a pricing measure in an incomplete market

- Consider an arbitrage-free market of tradable assets in a combined financial - actuarial world.
- Suppose that this market is incomplete.
- How to select a particular pricing measure?
- Part I vs. Part II:

Part II - Introduction

Chosing a pricing measure in an incomplete market

- Consider an arbitrage-free market of tradable assets in a combined financial - actuarial world.
- Suppose that this market is incomplete.
- There exists more than 1 equivalent martingale measure.
- There is no unique arbitrage-free price for non-replicable contingent claims.
- How to select a particular pricing measure?
- Part I vs. Part II:

Part II - Introduction

Chosing a pricing measure in an incomplete market

- Consider an arbitrage-free market of tradable assets in a combined financial - actuarial world.
- Suppose that this market is incomplete.
- There exists more than 1 equivalent martingale measure.
- There is no unique arbitrage-free price for non-replicable contingent claims.
- How to select a particular pricing measure?
- Part I vs. Part II:

Part II - Introduction

Chosing a pricing measure in an incomplete market

- Consider an arbitrage-free market of tradable assets in a combined financial - actuarial world.
- Suppose that this market is incomplete.
- There exists more than 1 equivalent martingale measure.
- There is no unique arbitrage-free price for non-replicable contingent claims.
- How to select a particular pricing measure?
- Part I vs. Part II:

Part II - Introduction

Chosing a pricing measure in an incomplete market

- Consider an arbitrage-free market of tradable assets in a combined financial - actuarial world.
- Suppose that this market is incomplete.
- There exists more than 1 equivalent martingale measure.
- There is no unique arbitrage-free price for non-replicable contingent claims.
- How to select a particular pricing measure?
* Chosing the measure \mathbb{Q} that is closest to \mathbb{P}
- Closeness is defined in terms of relative entropy.
- $\widehat{\mathbb{Q}}=$ Minimal Entropy Martingale Measure ${ }^{3}$
\square

Part II - Introduction

Chosing a pricing measure in an incomplete market

- Consider an arbitrage-free market of tradable assets in a combined financial - actuarial world.
- Suppose that this market is incomplete.
- There exists more than 1 equivalent martingale measure.
- There is no unique arbitrage-free price for non-replicable contingent claims.
- How to select a particular pricing measure?
- Chosing the measure $\widehat{\mathbb{Q}}$ that is closest to \mathbb{P}.
- Closeness is defined in terms of relative entropy.
- $\widehat{\mathbb{Q}}=$ Minimal Entropy Martingale Measure ${ }^{3}$.
\square

Part II - Introduction

Chosing a pricing measure in an incomplete market

- Consider an arbitrage-free market of tradable assets in a combined financial - actuarial world.
- Suppose that this market is incomplete.
- There exists more than 1 equivalent martingale measure.
- There is no unique arbitrage-free price for non-replicable contingent claims.
- How to select a particular pricing measure?
- Chosing the measure $\widehat{\mathbb{Q}}$ that is closest to \mathbb{P}.
- Closeness is defined in terms of relative entropy.

Part II - Introduction

Chosing a pricing measure in an incomplete market

- Consider an arbitrage-free market of tradable assets in a combined financial - actuarial world.
- Suppose that this market is incomplete.
- There exists more than 1 equivalent martingale measure.
- There is no unique arbitrage-free price for non-replicable contingent claims.
- How to select a particular pricing measure?
- Chosing the measure $\widehat{\mathbb{Q}}$ that is closest to \mathbb{P}.
- Closeness is defined in terms of relative entropy.
- $\widehat{\mathbb{Q}}=$ Minimal Entropy Martingale Measure ${ }^{3}$.
- Part I vs. Part II:

Part II - Introduction

Chosing a pricing measure in an incomplete market

- Consider an arbitrage-free market of tradable assets in a combined financial - actuarial world.
- Suppose that this market is incomplete.
- There exists more than 1 equivalent martingale measure.
- There is no unique arbitrage-free price for non-replicable contingent claims.
- How to select a particular pricing measure?
- Chosing the measure $\widehat{\mathbb{Q}}$ that is closest to \mathbb{P}.
- Closeness is defined in terms of relative entropy.
- $\widehat{\mathbb{Q}}=$ Minimal Entropy Martingale Measure ${ }^{3}$.
- Part I vs. Part II:
- Part I: \mathbb{P}-independence does not imply \mathbb{Q}-independence.
- Part II: Does \mathbb{P}-independence imply \mathbb{Q}-independence?

Part II - Introduction

Chosing a pricing measure in an incomplete market

- Consider an arbitrage-free market of tradable assets in a combined financial - actuarial world.
- Suppose that this market is incomplete.
- There exists more than 1 equivalent martingale measure.
- There is no unique arbitrage-free price for non-replicable contingent claims.
- How to select a particular pricing measure?
- Chosing the measure $\widehat{\mathbb{Q}}$ that is closest to \mathbb{P}.
- Closeness is defined in terms of relative entropy.
- $\widehat{\mathbb{Q}}=$ Minimal Entropy Martingale Measure ${ }^{3}$.
- Part I vs. Part II:
- Part I: \mathbb{P}-independence does not imply \mathbb{Q}-independence.

Part II - Introduction

Chosing a pricing measure in an incomplete market

- Consider an arbitrage-free market of tradable assets in a combined financial - actuarial world.
- Suppose that this market is incomplete.
- There exists more than 1 equivalent martingale measure.
- There is no unique arbitrage-free price for non-replicable contingent claims.
- How to select a particular pricing measure?
- Chosing the measure $\widehat{\mathbb{Q}}$ that is closest to \mathbb{P}.
- Closeness is defined in terms of relative entropy.
- $\widehat{\mathbb{Q}}=$ Minimal Entropy Martingale Measure ${ }^{3}$.
- Part I vs. Part II:
- Part I: \mathbb{P}-independence does not imply \mathbb{Q}-independence.
- Part II: Does \mathbb{P}-independence imply \mathbb{Q}-independence?

The global world

- Consider a single period, finite state world $(\Omega, \mathcal{F}, \mathbb{P})$.
- The universe:

- Events: $\mathcal{F}=$ set of all subsets of Ω.
- Real-world probability measure \mathbb{P} :

$$
\mathbb{P}[(i, j)]=p_{i j} \geq 0
$$

The global world

- Consider a single period, finite state world $(\Omega, \mathcal{F}, \mathbb{P})$.
- The universe:

$$
\Omega=\left\{(i, j) \mid i=1, \ldots, n^{(f)} \text { and } j=1, \ldots, n^{(a)}\right\}
$$

- Events: $\mathcal{F}=$ set of all subsets of Ω.
- Real-world probability measure \mathbb{P} :

$$
\mathbb{P}[(i, j)]=p_{i j} \geq 0
$$

The global world

- Consider a single period, finite state world $(\Omega, \mathcal{F}, \mathbb{P})$.
- The universe:

$$
\Omega=\left\{(i, j) \mid i=1, \ldots, n^{(f)} \text { and } j=1, \ldots, n^{(a)}\right\},
$$

- Any (i, j) corresponds to a global state of the world:
- $i=$ financial substate of the world,
- $j=$ actuarial substate of the world
- Events: $\mathcal{F}=$ set of all subsets of Ω.
- Real-world probability measure \mathbb{P} :

$$
\mathbb{P}[(i, j)]=p_{i j} \geq 0
$$

The global world

- Consider a single period, finite state world $(\Omega, \mathcal{F}, \mathbb{P})$.
- The universe:

$$
\Omega=\left\{(i, j) \mid i=1, \ldots, n^{(f)} \text { and } j=1, \ldots, n^{(a)}\right\},
$$

- Any (i, j) corresponds to a global state of the world:
- $i=$ financial substate of the world,
- Events: $\mathcal{F}=$ set of all subsets of Ω.
- Real-world probability measure \mathbb{P} :

$$
\mathbb{P}[(i, j)]=p_{i j} \geq 0
$$

The global world

- Consider a single period, finite state world $(\Omega, \mathcal{F}, \mathbb{P})$.
- The universe:

$$
\Omega=\left\{(i, j) \mid i=1, \ldots, n^{(f)} \text { and } j=1, \ldots, n^{(a)}\right\},
$$

- Any (i, j) corresponds to a global state of the world:
- $i=$ financial substate of the world,
- $j=$ actuarial substate of the world.
- Events: $\mathcal{F}=$ set of all subsets of Ω.
- Real-world probability measure \mathbb{P} :

$$
\mathbb{P}[(i, j)]=p_{i j} \geq 0
$$

The global world

- Consider a single period, finite state world $(\Omega, \mathcal{F}, \mathbb{P})$.
- The universe:

$$
\Omega=\left\{(i, j) \mid i=1, \ldots, n^{(f)} \text { and } j=1, \ldots, n^{(a)}\right\}
$$

- Any (i, j) corresponds to a global state of the world:
- $i=$ financial substate of the world,
- $j=$ actuarial substate of the world.
- Events: $\mathcal{F}=$ set of all subsets of Ω.
- Real-world probability measure \mathbb{P} :

The global world

- Consider a single period, finite state world $(\Omega, \mathcal{F}, \mathbb{P})$.
- The universe:

$$
\Omega=\left\{(i, j) \mid i=1, \ldots, n^{(f)} \text { and } j=1, \ldots, n^{(a)}\right\}
$$

- Any (i, j) corresponds to a global state of the world:
- $i=$ financial substate of the world,
- $j=$ actuarial substate of the world.
- Events: $\mathcal{F}=$ set of all subsets of Ω.
- Real-world probability measure \mathbb{P} :

$$
\mathbb{P}[(i, j)]=p_{i j} \geq 0
$$

The global world

- A market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$:
- Risk-free bond (interest rate r).
- A security:
- A purely financial security
- A purely actuarial security:

The global world

- A market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$:
- Risk-free bond (interest rate r).

- A purely actuarial security:

The global world

- A market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$:
- Risk-free bond (interest rate r).
- A security: $(S(0), S(1))$
- $S(1)=s_{i j} \geq 0$ if the state of the world is (i, j).
- A purely actuarial security:

The global world

- A market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$:
- Risk-free bond (interest rate r).
- A security: $(S(0), S(1))$
- $S(0)=s_{0}>0$.
- $S(1)=s_{i j} \geq 0$ if the state of the world is (i, j).
- A purely financial security

- A purely actuarial security:

The global world

- A market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$:
- Risk-free bond (interest rate r).
- A security: $(S(0), S(1))$
- $S(0)=s_{0}>0$.
- $S(1)=s_{i j} \geq 0$ if the state of the world is (i, j).
- A purely financial security

The global world

- A market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$:
- Risk-free bond (interest rate r).
- A security: $(S(0), S(1))$
- $S(0)=s_{0}>0$.
- $S(1)=s_{i j} \geq 0$ if the state of the world is (i, j).
- A purely financial security: $\left(S^{(f)}(0), S^{(f)}(1)\right)$
- A purely actuarial security:

The global world

- A market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$:
- Risk-free bond (interest rate r).
- A security: $(S(0), S(1))$
- $S(0)=s_{0}>0$.
- $S(1)=s_{i j} \geq 0$ if the state of the world is (i, j).
- A purely financial security: $\left(S^{(f)}(0), S^{(f)}(1)\right)$
- $S^{(f)}(0)=s_{0}^{(f)}>0$.
- A purely actuarial security

The global world

- A market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$:
- Risk-free bond (interest rate r).
- A security: $(S(0), S(1))$
- $S(0)=s_{0}>0$.
- $S(1)=s_{i j} \geq 0$ if the state of the world is (i, j).
- A purely financial security: $\left(S^{(f)}(0), S^{(f)}(1)\right)$
- $S^{(f)}(0)=s_{0}^{(f)}>0$.
- $S^{(f)}(1)=s_{i}^{(f)} \geq 0$ if the state of the world is (i, j).
- A purely actuarial security

The global world

- A market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$:
- Risk-free bond (interest rate r).
- A security: $(S(0), S(1))$
- $S(0)=s_{0}>0$.
- $S(1)=s_{i j} \geq 0$ if the state of the world is (i, j).
- A purely financial security: $\left(S^{(f)}(0), S^{(f)}(1)\right)$
- $S^{(f)}(0)=s_{0}^{(f)}>0$.
- $S^{(f)}(1)=s_{i}^{(f)} \geq 0$ if the state of the world is (i, j).
- A purely actuarial security: $\left(S^{(a)}(0), S^{(a)}(1)\right)$
- $S^{(a)}(1)=s_{j}^{(a)} \geq 0$ if the state of the world is (i, j).

The global world

- A market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$:
- Risk-free bond (interest rate r).
- A security: $(S(0), S(1))$
- $S(0)=s_{0}>0$.
- $S(1)=s_{i j} \geq 0$ if the state of the world is (i, j).
- A purely financial security: $\left(S^{(f)}(0), S^{(f)}(1)\right)$
- $S^{(f)}(0)=s_{0}^{(f)}>0$.
- $S^{(f)}(1)=s_{i}^{(f)} \geq 0$ if the state of the world is (i, j).
- A purely actuarial security: $\left(S^{(a)}(0), S^{(a)}(1)\right)$
- $S^{(a)}(0)=s_{0}^{(a)}>0$.

The global world

- A market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$:
- Risk-free bond (interest rate r).
- A security: $(S(0), S(1))$
- $S(0)=s_{0}>0$.
- $S(1)=s_{i j} \geq 0$ if the state of the world is (i, j).
- A purely financial security: $\left(S^{(f)}(0), S^{(f)}(1)\right)$
- $S^{(f)}(0)=s_{0}^{(f)}>0$.
- $S^{(f)}(1)=s_{i}^{(f)} \geq 0$ if the state of the world is (i, j).
- A purely actuarial security: $\left(S^{(a)}(0), S^{(a)}(1)\right)$
- $S^{(a)}(0)=s_{0}^{(a)}>0$.
- $S^{(a)}(1)=s_{j}^{(a)} \geq 0$ if the state of the world is (i, j).

The global world and its subworlds

- The financial subworld $\left(\Omega^{(f)}, \mathcal{F}^{(f)}, \mathbb{P}^{(f)}\right)$:
- Financial universe:

The global world and its subworlds

- The financial subworld $\left(\Omega^{(f)}, \mathcal{F}^{(f)}, \mathbb{P}^{(f)}\right)$:
- Financial universe:

$$
\Omega^{(f)}=\left\{i \mid i=1,2, \ldots, n^{(f)}\right\}
$$

- Financial events: $\mathcal{F}(f)=$ set of all subsets of $\Omega^{(f}$
- Real-world probability measure $\mathbb{P}^{(f)}$:
- A purely financial security: $\left(S^{(f)}(0), S^{(f)}(1)\right)$

The global world and its subworlds

- The financial subworld $\left(\Omega^{(f)}, \mathcal{F}^{(f)}, \mathbb{P}^{(f)}\right)$:
- Financial universe:

$$
\Omega^{(f)}=\left\{i \mid i=1,2, \ldots, n^{(f)}\right\}
$$

- Financial events: $\mathcal{F}^{(f)}=$ set of all subsets of $\Omega^{(f)}$.

[^0]
The global world and its subworlds

- The financial subworld $\left(\Omega^{(f)}, \mathcal{F}^{(f)}, \mathbb{P}^{(f)}\right)$:
- Financial universe:

$$
\Omega^{(f)}=\left\{i \mid i=1,2, \ldots, n^{(f)}\right\}
$$

- Financial events: $\mathcal{F}^{(f)}=$ set of all subsets of $\Omega^{(f)}$.
- Real-world probability measure $\mathbb{P}^{(f)}$:

$$
\mathbb{P}^{(f)}[i]=\sum_{j=1}^{n^{(a)}} p_{i j}=p_{i}^{(f)}>0
$$

The global world and its subworlds

- The financial subworld $\left(\Omega^{(f)}, \mathcal{F}^{(f)}, \mathbb{P}^{(f)}\right)$:
- Financial universe:

$$
\Omega^{(f)}=\left\{i \mid i=1,2, \ldots, n^{(f)}\right\}
$$

- Financial events: $\mathcal{F}^{(f)}=$ set of all subsets of $\Omega^{(f)}$.
- Real-world probability measure $\mathbb{P}^{(f)}$:

$$
\mathbb{P}^{(f)}[i]=\sum_{j=1}^{n^{(a)}} p_{i j}=p_{i}^{(f)}>0
$$

- A purely financial security: $\left(S^{(f)}(0), S^{(f)}(1)\right)$

The global world and its subworlds

- The financial subworld $\left(\Omega^{(f)}, \mathcal{F}^{(f)}, \mathbb{P}^{(f)}\right)$:
- Financial universe:

$$
\Omega^{(f)}=\left\{i \mid i=1,2, \ldots, n^{(f)}\right\}
$$

- Financial events: $\mathcal{F}^{(f)}=$ set of all subsets of $\Omega^{(f)}$.
- Real-world probability measure $\mathbb{P}^{(f)}$:

$$
\mathbb{P}^{(f)}[i]=\sum_{j=1}^{n^{(a)}} p_{i j}=p_{i}^{(f)}>0
$$

- A purely financial security: $\left(S^{(f)}(0), S^{(f)}(1)\right)$
- $S^{(f)}(0)=s_{0}^{(f)}>0$.

The global world and its subworlds

- The financial subworld $\left(\Omega^{(f)}, \mathcal{F}^{(f)}, \mathbb{P}^{(f)}\right)$:
- Financial universe:

$$
\Omega^{(f)}=\left\{i \mid i=1,2, \ldots, n^{(f)}\right\}
$$

- Financial events: $\mathcal{F}^{(f)}=$ set of all subsets of $\Omega^{(f)}$.
- Real-world probability measure $\mathbb{P}^{(f)}$:

$$
\mathbb{P}^{(f)}[i]=\sum_{j=1}^{n^{(a)}} p_{i j}=p_{i}^{(f)}>0
$$

- A purely financial security: $\left(S^{(f)}(0), S^{(f)}(1)\right)$
- $S^{(f)}(0)=s_{0}^{(f)}>0$.
- $S^{(f)}(1)=s_{i}^{(f)} \geq 0$ if the financial substate of the world is i.

The global world and its subworlds

- The actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$:
- Actuarial universe:

- Actuarial events: $\mathcal{F}^{(a)}=$ set of all subsets of $\Omega^{(a)}$ - Real-world probability measure $\mathbb{P}^{(a)}$:
- A purely actuarial security

The global world and its subworlds

- The actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$:
- Actuarial universe:

$$
\Omega^{(a)}=\left\{j \mid j=1,2, \ldots, n^{(a)}\right\}
$$

- Actuarial events: $\mathcal{F}^{(a)}=$ set of all subsets of $\Omega^{(a)}$ - Real-world probability measure $\mathbb{P}^{(a)}$:
- A purely actuarial security

The global world and its subworlds

- The actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$:
- Actuarial universe:

$$
\Omega^{(a)}=\left\{j \mid j=1,2, \ldots, n^{(a)}\right\}
$$

- Actuarial events: $\mathcal{F}^{(a)}=$ set of all subsets of $\Omega^{(a)}$.
- Real-world probability measure $\mathbb{P}^{(a)}$

The global world and its subworlds

- The actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$:
- Actuarial universe:

$$
\Omega^{(a)}=\left\{j \mid j=1,2, \ldots, n^{(a)}\right\}
$$

- Actuarial events: $\mathcal{F}^{(a)}=$ set of all subsets of $\Omega^{(a)}$.
- Real-world probability measure $\mathbb{P}^{(a)}$:

$$
\mathbb{P}^{(a)}[j]=\sum_{i=1}^{n^{(f)}} p_{i j}=p_{j}^{(a)}>0
$$

- A purely actuarial security

The global world and its subworlds

- The actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$:
- Actuarial universe:

$$
\Omega^{(a)}=\left\{j \mid j=1,2, \ldots, n^{(a)}\right\}
$$

- Actuarial events: $\mathcal{F}^{(a)}=$ set of all subsets of $\Omega^{(a)}$.
- Real-world probability measure $\mathbb{P}^{(a)}$:

$$
\mathbb{P}^{(a)}[j]=\sum_{i=1}^{n^{(f)}} p_{i j}=p_{j}^{(a)}>0
$$

- A purely actuarial security: $\left(S^{(a)}(0), S^{(a)}(1)\right)$
- $S^{(a)}(1)=s_{j}^{(a)} \geq 0$ if the actuarial substate of the world is

The global world and its subworlds

- The actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$:
- Actuarial universe:

$$
\Omega^{(a)}=\left\{j \mid j=1,2, \ldots, n^{(a)}\right\}
$$

- Actuarial events: $\mathcal{F}^{(a)}=$ set of all subsets of $\Omega^{(a)}$.
- Real-world probability measure $\mathbb{P}^{(a)}$:

$$
\mathbb{P}^{(a)}[j]=\sum_{i=1}^{n^{(f)}} p_{i j}=p_{j}^{(a)}>0
$$

- A purely actuarial security: $\left(S^{(a)}(0), S^{(a)}(1)\right)$
- $S^{(a)}(0)=s_{0}^{(a)}>0$.
- $S^{(a)}(1)=s_{j}^{(a)} \geq 0$ if the actuarial substate of the world is

The global world and its subworlds

- The actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$:
- Actuarial universe:

$$
\Omega^{(a)}=\left\{j \mid j=1,2, \ldots, n^{(a)}\right\}
$$

- Actuarial events: $\mathcal{F}^{(a)}=$ set of all subsets of $\Omega^{(a)}$.
- Real-world probability measure $\mathbb{P}^{(a)}$:

$$
\mathbb{P}^{(a)}[j]=\sum_{i=1}^{n^{(f)}} p_{i j}=p_{j}^{(a)}>0
$$

- A purely actuarial security: $\left(S^{(a)}(0), S^{(a)}(1)\right)$
- $S^{(a)}(0)=s_{0}^{(a)}>0$.
- $S^{(a)}(1)=s_{j}^{(a)} \geq 0$ if the actuarial substate of the world is.

Pricing assets in the global market

Equivalent martingale measures

- Consider a market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$.
- We assume that this market is arbitrage-free.
- There exists at least 1 equivalent martingale measure \mathbb{Q}

- The projections $\mathbb{Q}^{(f)}$ and $\mathbb{Q}^{(a)}$ of \mathbb{Q} to the subworlds:

- $\mathbb{Q}^{(f)}$ and $\mathbb{Q}^{(a)}$ are equivalent martingale measures for the respective submarkets in the subworlds.

Pricing assets in the global market

Equivalent martingale measures

- Consider a market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$.
- We assume that this market is arbitrage-free.
- There exists at least 1 equivalent martingale measure \mathbb{Q}

- The projections $\mathbb{Q}^{(f)}$ and $\mathbb{Q}^{(a)}$ of \mathbb{Q} to the subworlds:

$\rightarrow \mathbb{Q}^{(f)}$ and $\mathbb{Q}^{(a)}$ are equivalent martingale measures for the respective submarkets in the subworlds.

Pricing assets in the global market

Equivalent martingale measures

- Consider a market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$.
- We assume that this market is arbitrage-free.
- There exists at least 1 equivalent martingale measure \mathbb{Q} :

$$
\mathrm{Q}[(i, j)]=q_{i j}
$$

- The projections $\mathbb{Q}^{(f)}$ and $\mathbb{Q}^{(a)}$ of \mathbb{Q} to the subworlds:

$\rightarrow \mathbb{Q}^{(f)}$ and $\mathbb{Q}^{(a)}$ are equivalent martingale measures for the respective submarkets in the subworlds.

Pricing assets in the global market

Equivalent martingale measures

- Consider a market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$.
- We assume that this market is arbitrage-free.
- There exists at least 1 equivalent martingale measure \mathbb{Q} :

$$
\mathbb{Q}[(i, j)]=q_{i j}
$$

- The projections $\mathbb{Q}^{(f)}$ and $\mathbb{Q}^{(a)}$ of \mathbb{Q} to the subworlds:

$$
q_{i}^{(f)}=\sum_{j=1}^{n^{(a)}} q_{i j}=\quad \text { and } \quad q_{j}^{(a)}=\sum_{i=1}^{n^{(f)}} q_{i j}
$$

-1 are equivalent martingale measures for the respective submarkets in the subworlds.

Pricing assets in the global market

Equivalent martingale measures

- Consider a market of tradable assets in the global world $(\Omega, \mathcal{F}, \mathbb{P})$.
- We assume that this market is arbitrage-free.
- There exists at least 1 equivalent martingale measure \mathbb{Q} :

$$
\mathbb{Q}[(i, j)]=q_{i j}
$$

- The projections $\mathbb{Q}^{(f)}$ and $\mathbb{Q}^{(a)}$ of \mathbb{Q} to the subworlds:

$$
q_{i}^{(f)}=\sum_{j=1}^{n^{(a)}} q_{i j}=\quad \text { and } \quad q_{j}^{(a)}=\sum_{i=1}^{n^{(f)}} q_{i j}
$$

- $\mathbb{Q}^{(f)}$ and $\mathbb{Q}^{(a)}$ are equivalent martingale measures for the respective submarkets in the subworlds.

Pricing assets in the global market

Independence between financial and actuarial risks

- The probability measure $\mathbb{P}^{(f)} \times \mathbb{P}^{(a)}$:

$$
\left(\mathbb{P}^{(f)} \times \mathbb{P}^{(a)}\right)[(i, j)]=p_{i}^{(f)} \times p_{j}^{(a)}
$$

The probability measure $\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}$

- $\underline{\mathbb{P} \text {-independence: }}$

- Q-independence:

- $\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}$ in general not equivalent martingale measure.
- $\mathbb{P} \equiv \mathbb{P}$

Pricing assets in the global market

Independence between financial and actuarial risks

- The probability measure $\mathbb{P}^{(f)} \times \mathbb{P}^{(a)}$:

$$
\left(\mathbb{P}^{(f)} \times \mathbb{P}^{(a)}\right)[(i, j)]=p_{i}^{(f)} \times p_{j}^{(a)}
$$

- The probability measure $\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}$:

$$
\left(\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}\right)[(i, j)]=q_{i}^{(f)} \times q_{j}^{(a)}
$$

- P-independence: $p_{i j}=p_{i}^{(f)} \times p_{j}^{(a)}$
- Q-independence:

- $\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}$ in general not equivalent martingale measure.
\square

Pricing assets in the global market

Independence between financial and actuarial risks

- The probability measure $\mathbb{P}^{(f)} \times \mathbb{P}^{(a)}$:

$$
\left(\mathbb{P}^{(f)} \times \mathbb{P}^{(a)}\right)[(i, j)]=p_{i}^{(f)} \times p_{j}^{(a)}
$$

- The probability measure $\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}$:

$$
\left(\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}\right)[(i, j)]=q_{i}^{(f)} \times q_{j}^{(a)}
$$

- $\underline{\mathbb{P} \text {-independence: }}$

$$
p_{i j}=p_{i}^{(f)} \times p_{j}^{(a)}
$$

- Q-independence:

$\rightarrow \mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}$ in general not equivalent martingale measure.

Pricing assets in the global market

Independence between financial and actuarial risks

- The probability measure $\mathbb{P}^{(f)} \times \mathbb{P}^{(a)}$:

$$
\left(\mathbb{P}^{(f)} \times \mathbb{P}^{(a)}\right)[(i, j)]=p_{i}^{(f)} \times p_{j}^{(a)}
$$

- The probability measure $\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}$:

$$
\left(\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}\right)[(i, j)]=q_{i}^{(f)} \times q_{j}^{(a)}
$$

- $\underline{\mathbb{P} \text {-independence: }}$

$$
p_{i j}=p_{i}^{(f)} \times p_{j}^{(a)}
$$

- Q-independence:

$$
q_{i j}=q_{i}^{(f)} \times q_{j}^{(a)}
$$

Pricing assets in the global market

Independence between financial and actuarial risks

- The probability measure $\mathbb{P}^{(f)} \times \mathbb{P}^{(a)}$:

$$
\left(\mathbb{P}^{(f)} \times \mathbb{P}^{(a)}\right)[(i, j)]=p_{i}^{(f)} \times p_{j}^{(a)}
$$

- The probability measure $\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}$:

$$
\left(\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}\right)[(i, j)]=q_{i}^{(f)} \times q_{j}^{(a)}
$$

- $\underline{\mathbb{P} \text {-independence: }}$

$$
p_{i j}=p_{i}^{(f)} \times p_{j}^{(a)}
$$

- Q-independence:

$$
q_{i j}=q_{i}^{(f)} \times q_{j}^{(a)}
$$

- $\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}$ in general not equivalent martingale measure.

Pricing assets in the global market

Independence between financial and actuarial risks

- The probability measure $\mathbb{P}^{(f)} \times \mathbb{P}^{(a)}$:

$$
\left(\mathbb{P}^{(f)} \times \mathbb{P}^{(a)}\right)[(i, j)]=p_{i}^{(f)} \times p_{j}^{(a)}
$$

- The probability measure $\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}$:

$$
\left(\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}\right)[(i, j)]=q_{i}^{(f)} \times q_{j}^{(a)}
$$

- $\underline{\mathbb{P} \text {-independence: }}$

$$
p_{i j}=p_{i}^{(f)} \times p_{j}^{(a)}
$$

- Q-independence:

$$
q_{i j}=q_{i}^{(f)} \times q_{j}^{(a)}
$$

- $\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}$ in general not equivalent martingale measure.
- $\mathbb{P} \equiv \mathbb{P}^{(f)} \times \mathbb{P}^{(a)} \Rightarrow \mathbb{P}$ and $\mathbb{Q}^{(f)} \times \mathbb{Q}^{(a)}$ are equivalent.

The Minimal Entropy Martingale Measure

Relative entropy (Kulback-Leibner information)

- Consider the probability measures \mathbb{P} and \mathbb{Q} defined on (Ω, \mathcal{F}).
- Relative entropy of \mathbb{Q} wrt \mathbb{P} :

- Properties:

The Minimal Entropy Martingale Measure

Relative entropy (Kulback-Leibner information)

- Consider the probability measures \mathbb{P} and \mathbb{Q} defined on (Ω, \mathcal{F}).
- Relative entropy of \mathbb{Q} wrt \mathbb{P} :

$$
I(\mathbb{Q}, \mathbb{P})=\sum_{i, j} q_{i j} \ln \left(\frac{q_{i j}}{p_{i j}}\right)
$$

- sum over all i, j with $p_{i j}>0$.
- $0 \ln 0=0$ by convention.
- Properties:

The Minimal Entropy Martingale Measure

Relative entropy (Kulback-Leibner information)

- Consider the probability measures \mathbb{P} and \mathbb{Q} defined on (Ω, \mathcal{F}).
- Relative entropy of \mathbb{Q} wrt \mathbb{P} :

$$
I(\mathbb{Q}, \mathbb{P})=\sum_{i, j} q_{i j} \ln \left(\frac{q_{i j}}{p_{i j}}\right)
$$

- sum over all i, j with $p_{i j}>0$.

$$
0 \ln 0=0 \text { by convention. }
$$

- Properties:

The Minimal Entropy Martingale Measure

Relative entropy (Kulback-Leibner information)

- Consider the probability measures \mathbb{P} and \mathbb{Q} defined on (Ω, \mathcal{F}).
- Relative entropy of \mathbb{Q} wrt \mathbb{P} :

$$
I(\mathbb{Q}, \mathbb{P})=\sum_{i, j} q_{i j} \ln \left(\frac{q_{i j}}{p_{i j}}\right)
$$

- sum over all i, j with $p_{i j}>0$.
- $0 \ln 0=0$ by convention.
- Properties:

The Minimal Entropy Martingale Measure

Relative entropy (Kulback-Leibner information)

- Consider the probability measures \mathbb{P} and \mathbb{Q} defined on (Ω, \mathcal{F}).
- Relative entropy of \mathbb{Q} wrt \mathbb{P} :

$$
I(\mathbb{Q}, \mathbb{P})=\sum_{i, j} q_{i j} \ln \left(\frac{q_{i j}}{p_{i j}}\right)
$$

- sum over all i, j with $p_{i j}>0$.
- $0 \ln 0=0$ by convention.
- Properties:

- I($\mathbb{Q}, \mathbb{P})$ increases if the measures 'diverge'
- I (\mathbb{Q}, \mathbb{P}) is not a 'distance' in the strict sense.

The Minimal Entropy Martingale Measure

Relative entropy (Kulback-Leibner information)

- Consider the probability measures \mathbb{P} and \mathbb{Q} defined on (Ω, \mathcal{F}).
- Relative entropy of \mathbb{Q} wrt \mathbb{P} :

$$
I(\mathbb{Q}, \mathbb{P})=\sum_{i, j} q_{i j} \ln \left(\frac{q_{i j}}{p_{i j}}\right)
$$

- sum over all i, j with $p_{i j}>0$.
- $0 \ln 0=0$ by convention.
- Properties:
- $I(\mathbb{Q}, \mathbb{P}) \geq 0$.

The Minimal Entropy Martingale Measure

Relative entropy (Kulback-Leibner information)

- Consider the probability measures \mathbb{P} and \mathbb{Q} defined on (Ω, \mathcal{F}).
- Relative entropy of \mathbb{Q} wrt \mathbb{P} :

$$
I(\mathbb{Q}, \mathbb{P})=\sum_{i, j} q_{i j} \ln \left(\frac{q_{i j}}{p_{i j}}\right)
$$

- sum over all i, j with $p_{i j}>0$.
- $0 \ln 0=0$ by convention.
- Properties:
- $\quad I(\mathbb{Q}, \mathbb{P}) \geq 0$.
- $I(\mathbb{Q}, \mathbb{P})=0 \Leftrightarrow \mathbb{Q} \equiv \mathbb{P}$.
- $/(\mathbb{Q}, \mathbb{P})$ increases if the measures 'diverge'
- I (\mathbb{Q}, \mathbb{P}) is not a 'distance' in the strict sense.

The Minimal Entropy Martingale Measure

Relative entropy (Kulback-Leibner information)

- Consider the probability measures \mathbb{P} and \mathbb{Q} defined on (Ω, \mathcal{F}).
- Relative entropy of \mathbb{Q} wrt \mathbb{P} :

$$
I(\mathbb{Q}, \mathbb{P})=\sum_{i, j} q_{i j} \ln \left(\frac{q_{i j}}{p_{i j}}\right)
$$

- sum over all i, j with $p_{i j}>0$.
- $0 \ln 0=0$ by convention.
- Properties:
- $\quad I(\mathbb{Q}, \mathbb{P}) \geq 0$.
- $\quad I(\mathbb{Q}, \mathbb{P})=0 \Leftrightarrow \mathbb{Q} \equiv \mathbb{P}$.
- I (\mathbb{Q}, \mathbb{P}) increases if the measures 'diverge'.

The Minimal Entropy Martingale Measure

Relative entropy (Kulback-Leibner information)

- Consider the probability measures \mathbb{P} and \mathbb{Q} defined on (Ω, \mathcal{F}).
- Relative entropy of \mathbb{Q} wrt \mathbb{P} :

$$
I(\mathbb{Q}, \mathbb{P})=\sum_{i, j} q_{i j} \ln \left(\frac{q_{i j}}{p_{i j}}\right)
$$

- sum over all i, j with $p_{i j}>0$.
- $0 \ln 0=0$ by convention.
- Properties:
- $\quad I(\mathbb{Q}, \mathbb{P}) \geq 0$.
- $\quad I(\mathbb{Q}, \mathbb{P})=0 \Leftrightarrow \mathbb{Q} \equiv \mathbb{P}$.
- I (\mathbb{Q}, \mathbb{P}) increases if the measures 'diverge'.
- I (\mathbb{Q}, \mathbb{P}) is not a 'distance' in the strict sense.

The Minimal Entropy Martingale Measure

The global entropy measure

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$.
- This world is home to a market of tradable assets.
- $\mathcal{M}=$ the (nonempty) set of all martingale measures.
- The Minimal Entropy Martingale Measure $\widehat{\mathbb{Q}} \in \mathcal{M}$ satisfies ${ }^{4}$:

> - We will call \widehat{Q} the 'global entropy measure'
> - The global entropy measure always exists and is unique.

The Minimal Entropy Martingale Measure

The global entropy measure

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$.
- This world is home to a market of tradable assets.
$\Rightarrow \mathcal{M}=$ the (non-empty) set of all martingale measures.
- The Minimal Entropy Martingale Measure $\widehat{\mathbb{Q}} \in \mathcal{M}$ satisfies ${ }^{4}$:

- We will call $\widehat{\mathbb{Q}}$ the 'global entropy measure'
- The global entropy measure always exists and is unique.

The Minimal Entropy Martingale Measure

The global entropy measure

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$.
- This world is home to a market of tradable assets.
- $\mathcal{M}=$ the (non-empty) set of all martingale measures.
- The Minimal Entropy Martingale Measure $\mathbb{Q} \in \mathcal{M}$ satisfies ${ }^{4}$:

- We will call $\widehat{\mathbb{Q}}$ the 'global entropy measure'
- The global entropy measure always exists and is unique.

The Minimal Entropy Martingale Measure

The global entropy measure

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$.
- This world is home to a market of tradable assets.
- $\mathcal{M}=$ the (non-empty) set of all martingale measures.
- The Minimal Entropy Martingale Measure $\widehat{\mathbb{Q}} \in \mathcal{M}$ satisfies ${ }^{4}$:

$$
I(\widehat{\mathbb{Q}}, \mathbb{P})=\min _{\mathbb{Q} \in \mathcal{M}} I(\mathbb{Q}, \mathbb{P})
$$

- We will call Q the 'global entropy measure
- The global entropy measure always exists and is unique.

The Minimal Entropy Martingale Measure

The global entropy measure

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$.
- This world is home to a market of tradable assets.
- $\mathcal{M}=$ the (non-empty) set of all martingale measures.
- The Minimal Entropy Martingale Measure $\widehat{\mathbb{Q}} \in \mathcal{M}$ satisfies ${ }^{4}$:

$$
I(\widehat{\mathbb{Q}}, \mathbb{P})=\min _{\mathbb{Q} \in \mathcal{M}} I(\mathbb{Q}, \mathbb{P})
$$

- We will call $\widehat{\mathbb{Q}}$ the 'global entropy measure'.
> The global entropy measure always exists and is unique.

The Minimal Entropy Martingale Measure

The global entropy measure

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$.
- This world is home to a market of tradable assets.
- $\mathcal{M}=$ the (non-empty) set of all martingale measures.
- The Minimal Entropy Martingale Measure $\widehat{\mathbb{Q}} \in \mathcal{M}$ satisfies ${ }^{4}$:

$$
I(\widehat{\mathbb{Q}}, \mathbb{P})=\min _{\mathbb{Q} \in \mathcal{M}} I(\mathbb{Q}, \mathbb{P})
$$

- We will call $\widehat{\mathbb{Q}}$ the 'global entropy measure'.
- The global entropy measure always exists and is unique.

A market with only purely financial assets

The global world

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ and the following market of tradable assets:
- A risk-free bond (interest rate r)
- A purely financial security:
- The class $\mathcal{M}=$ all probability measures \mathbb{Q} on (Ω, \mathcal{F}) with

- The global entropy measure \widehat{Q}

A market with only purely financial assets

The global world

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ and the following market of tradable assets:
- A risk-free bond (interest rate r).
- The class $\mathcal{M}=$ all probability measures \mathbb{Q} on (Ω, \mathcal{F}) with

- The global entropy measure \mathbb{Q} :

A market with only purely financial assets

The global world

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ and the following market of tradable assets:
- A risk-free bond (interest rate r).
- A purely financial security: $\left(S^{(f)}(0)=s_{0}^{(f)}, S^{(f)}(1)\right)$
- The class $\mathcal{M}=$ all probability measures \mathbb{Q} on (Ω, \mathcal{F}) with

- The global entropy measure $\widehat{\mathbb{Q}}$

A market with only purely financial assets

The global world

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ and the following market of tradable assets:
- A risk-free bond (interest rate r).
- A purely financial security: $\left(S^{(f)}(0)=s_{0}^{(f)}, S^{(f)}(1)\right)$
- $S^{(f)}(1)=s_{i}^{(f)}$ if the state of the world is (i, j).
- The class $\mathcal{M}=$ all probability measures \mathbb{Q} on (Ω, \mathcal{F}) with

- The global entropy measure $\widehat{\mathbb{Q}}$

A market with only purely financial assets

The global world

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ and the following market of tradable assets:
- A risk-free bond (interest rate r).
- A purely financial security: $\left(S^{(f)}(0)=s_{0}^{(f)}, S^{(f)}(1)\right)$
- $S^{(f)}(1)=s_{i}^{(f)}$ if the state of the world is (i, j).
- The class $\mathcal{M}=$ all probability measures \mathbb{Q} on (Ω, \mathcal{F}) with

$$
e^{-r} \mathbb{E}^{\mathbb{Q}}\left[S^{(1)}(1)\right]=s_{0}^{(1)}
$$

- The global entropy measure $\widehat{\mathbb{Q}}$:

A market with only purely financial assets

The global world

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ and the following market of tradable assets:
- A risk-free bond (interest rate r).
- A purely financial security: $\left(S^{(f)}(0)=s_{0}^{(f)}, S^{(f)}(1)\right)$
- $S^{(f)}(1)=s_{i}^{(f)}$ if the state of the world is (i, j).
- The class $\mathcal{M}=$ all probability measures \mathbb{Q} on (Ω, \mathcal{F}) with

$$
e^{-r} \mathbb{E}^{\mathrm{Q}}\left[S^{(1)}(1)\right]=s_{0}^{(1)}
$$

- The global entropy measure $\widehat{\mathbb{Q}}$:

$$
I(\widehat{\mathbb{Q}}, \mathbb{P})=\min _{\mathbb{Q} \in \mathcal{M}} I(\mathbb{Q}, \mathbb{P})
$$

A market with only purely financial assets

The global world

- The global entropy measure $\widehat{\mathbb{Q}}$:

$$
\widehat{q}_{i j}=p_{i j} \times \frac{\exp \left(\widehat{\lambda} s_{i}^{(f)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\hat{\lambda} S^{(f)}(1)\right)\right]}
$$

- $\widehat{\lambda}$ is the unique solution of

$\checkmark \widehat{\mathbb{Q}}$ is equivalent to \mathbb{P}
- $\widehat{\mathbb{O}}$ is an Esscher transform of \mathbb{P}
- Projection of \mathbb{Q} to the financial subworld:

A market with only purely financial assets

The global world

- The global entropy measure $\widehat{\mathbb{Q}}$:

$$
\widehat{q}_{i j}=p_{i j} \times \frac{\exp \left(\widehat{\lambda} s_{i}^{(f)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\hat{\lambda} S^{(f)}(1)\right)\right]}
$$

- $\hat{\lambda}$ is the unique solution of

$$
\sum_{i} p_{i}^{(f)}\left(s_{i}^{(f)}-e^{r} s_{0}^{(f)}\right) \exp \left(\lambda s_{i}^{(f)}\right)=0
$$

- $\widehat{\mathbb{Q}}$ is equivalent to \mathbb{P}
- $\widehat{\mathbb{Q}}$ is an Esscher transform of \mathbb{P}
- Projection of $\widehat{\mathbb{Q}}$ to the financial subworld:

A market with only purely financial assets

The global world

- The global entropy measure $\widehat{\mathbb{Q}}$:

$$
\widehat{q}_{i j}=p_{i j} \times \frac{\exp \left(\widehat{\lambda} s_{i}^{(f)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\hat{\lambda} S^{(f)}(1)\right)\right]}
$$

- $\hat{\lambda}$ is the unique solution of

$$
\sum_{i} p_{i}^{(f)}\left(s_{i}^{(f)}-e^{r} s_{0}^{(f)}\right) \exp \left(\lambda s_{i}^{(f)}\right)=0
$$

- $\widehat{\mathbb{Q}}$ is equivalent to \mathbb{P}.
- \mathbb{Q} is an Esscher transform of \mathbb{P}
- Projection of $\widehat{\mathbb{Q}}$ to the financial subworld:

A market with only purely financial assets

The global world

- The global entropy measure $\widehat{\mathbb{Q}}$:

$$
\widehat{q}_{i j}=p_{i j} \times \frac{\exp \left(\hat{\lambda} s_{i}^{(f)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\hat{\lambda} S^{(f)}(1)\right)\right]}
$$

- $\hat{\lambda}$ is the unique solution of

$$
\sum_{i} p_{i}^{(f)}\left(s_{i}^{(f)}-e^{r} s_{0}^{(f)}\right) \exp \left(\lambda s_{i}^{(f)}\right)=0
$$

- $\widehat{\mathbb{Q}}$ is equivalent to \mathbb{P}.
- $\widehat{\mathbb{Q}}$ is an Esscher transform of \mathbb{P}.
- Projection of \mathbb{Q} to the financial subworld:

A market with only purely financial assets

The global world

- The global entropy measure $\widehat{\mathbb{Q}}$:

$$
\widehat{q}_{i j}=p_{i j} \times \frac{\exp \left(\widehat{\lambda} s_{i}^{(f)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\hat{\lambda} S^{(f)}(1)\right)\right]}
$$

- $\hat{\lambda}$ is the unique solution of

$$
\sum_{i} p_{i}^{(f)}\left(s_{i}^{(f)}-e^{r} s_{0}^{(f)}\right) \exp \left(\lambda s_{i}^{(f)}\right)=0
$$

- $\widehat{\mathbb{Q}}$ is equivalent to \mathbb{P}.
- $\widehat{\mathbb{Q}}$ is an Esscher transform of \mathbb{P}.
- Projection of $\widehat{\mathbb{Q}}$ to the financial subworld:

$$
\widehat{q}_{i}^{(f)}=p_{i}^{(f)} \times \frac{\exp \left(\hat{\lambda} s_{i}^{(f)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\hat{\lambda} S^{(f)}(1)\right)\right]}
$$

A market with only purely financial assets

The financial subworld

- Consider the financial subworld $\left(\Omega^{(f)}, \mathcal{F}^{(f)}, \mathbb{P}^{(f)}\right)$ and the corresponding financial submarket.
- The class $\mathcal{M}^{(f)}=$ all probability measures $\mathbb{Q}^{(f)}$ on

- The financial entropy measure $\widetilde{\mathbb{Q}}^{(f)}$

A market with only purely financial assets

The financial subworld

- Consider the financial subworld $\left(\Omega^{(f)}, \mathcal{F}^{(f)}, \mathbb{P}^{(f)}\right)$ and the corresponding financial submarket.
$-\frac{\text { The class } \mathcal{M}^{(f)}}{\left(\Omega^{(f)}, \mathcal{F}^{(f)}\right) \text { with }}=$ all probability measures $\mathbb{Q}^{(f)}$ on

$$
e^{-r} \mathbb{E}^{\mathbb{Q}^{(f)}}\left[S^{(f)}(1)\right]=s_{0}^{(f)}
$$

- The financial entropy measure $\widetilde{\mathbb{Q}}^{(f)}$

A market with only purely financial assets

The financial subworld

- Consider the financial subworld $\left(\Omega^{(f)}, \mathcal{F}^{(f)}, \mathbb{P}^{(f)}\right)$ and the corresponding financial submarket.
- The class $\mathcal{M}^{(f)}=$ all probability measures $\mathbb{Q}^{(f)}$ on $\left(\Omega^{(f)}, \mathcal{F}^{(f)}\right)$ with

$$
e^{-r} \mathbb{E}^{\mathbb{Q}^{(f)}}\left[S^{(f)}(1)\right]=s_{0}^{(f)}
$$

- The financial entropy measure $\widetilde{\mathbb{Q}}^{(f)}$:

$$
I\left(\widetilde{\mathbb{Q}}^{(f)}, \mathbb{P}^{(f)}\right)=\min _{\mathbb{Q}^{(f)} \in \mathcal{M}^{(f)}} I\left(\mathbb{Q}^{(f)}, \mathbb{P}^{(f)}\right)
$$

A market with only purely financial assets

The financial subworld

- The financial entropy measure $\widetilde{\mathbb{Q}}^{(f)}$:

$$
\widetilde{q}_{i}^{(f)}=p_{i}^{(f)} \times \frac{\exp \left(\widehat{\lambda} s_{i}^{(f)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\hat{\lambda} S^{(f)}(1)\right)\right]}
$$

- Relation between the entropy measures $\widetilde{\mathbb{Q}}^{(f)}$ and $\widehat{\mathbb{Q}}$

A market with only purely financial assets

The financial subworld

- The financial entropy measure $\widetilde{\mathbb{Q}}^{(f)}$:

$$
\widetilde{q}_{i}^{(f)}=p_{i}^{(f)} \times \frac{\exp \left(\hat{\lambda} s_{i}^{(f)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\hat{\lambda} S^{(f)}(1)\right)\right]}
$$

- Relation between the entropy measures $\widetilde{\mathbb{Q}}^{(f)}$ and $\widehat{\mathbb{Q}}$:

$$
\widetilde{\mathbb{Q}}^{(f)} \equiv \widehat{\mathbb{Q}}^{(f)}
$$

- The financial entropy measure is identical to the projection of the global entropy measure on the financial subworld.

A market with only purely financial assets

The financial subworld

- The financial entropy measure $\widetilde{\mathbb{Q}}^{(f)}$:

$$
\widetilde{\boldsymbol{q}}_{i}^{(f)}=p_{i}^{(f)} \times \frac{\exp \left(\hat{\lambda} s_{i}^{(f)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\hat{\lambda} S^{(f)}(1)\right)\right]}
$$

- Relation between the entropy measures $\widetilde{\mathbb{Q}}^{(f)}$ and $\widehat{\mathbb{Q}}$:

$$
\widetilde{\mathbb{Q}}^{(f)} \equiv \widehat{\mathbb{Q}}^{(f)}
$$

- The financial entropy measure is identical to the projection of the global entropy measure on the financial subworld.

A market with only purely financial assets

The actuarial subworld

- Consider the actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$ and the corresponding actuarial submarket.
- The class $\mathcal{M}^{(a)}=$ all probability measures $\mathbb{Q}^{(a)}$ on $\left.\Omega^{(a)}, \mathcal{F}^{(a)}\right)$
- The actuarial entropy measure $Q^{(a)}$

- Solution:

$$
\widetilde{\mathbb{Q}}^{(a)} \equiv \mathbb{P}^{(a)}
$$

- In general

A market with only purely financial assets

The actuarial subworld

- Consider the actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$ and the corresponding actuarial submarket.
- The class $\mathcal{M}^{(a)}=$ all probability measures $\mathbb{Q}^{(a)}$ on $\left(\Omega^{(a)}, \mathcal{F}^{(a)}\right)$.
- The actuarial entropy measure $\mathbb{Q}^{(a)}$

- Solution:

$$
\widetilde{\mathbb{Q}}^{(a)} \equiv \mathbb{P}^{(a)}
$$

- In general:

A market with only purely financial assets

The actuarial subworld

- Consider the actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$ and the corresponding actuarial submarket.
- The class $\mathcal{M}^{(a)}=$ all probability measures $\mathbb{Q}^{(a)}$ on $\left(\Omega^{(a)}, \mathcal{F}^{(a)}\right)$.
- The actuarial entropy measure $\widetilde{\mathbb{Q}}^{(a)}$:

$$
I\left(\widetilde{\mathbb{Q}}^{(a)}, \mathbb{P}^{(a)}\right)=\min _{\mathbb{Q}^{(a)} \in \mathcal{M}^{(a)}} I\left(\mathbb{Q}^{(a)}, \mathbb{P}^{(a)}\right)
$$

- Solution:

- In general

A market with only purely financial assets

The actuarial subworld

- Consider the actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$ and the corresponding actuarial submarket.
- The class $\mathcal{M}^{(a)}=$ all probability measures $\mathbb{Q}^{(a)}$ on $\left(\Omega^{(a)}, \mathcal{F}^{(a)}\right)$.
- The actuarial entropy measure $\widetilde{\mathbb{Q}}^{(a)}$:

$$
I\left(\widetilde{\mathbb{Q}}^{(a)}, \mathbb{P}^{(a)}\right)=\min _{\mathbb{Q}^{(a)} \in \mathcal{M}^{(a)}} I\left(\mathbb{Q}^{(a)}, \mathbb{P}^{(a)}\right)
$$

- Solution:

$$
\widetilde{\mathbb{Q}}^{(a)} \equiv \mathbb{P}^{(a)}
$$

- In general

A market with only purely financial assets

The actuarial subworld

- Consider the actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$ and the corresponding actuarial submarket.
- The class $\mathcal{M}^{(a)}=$ all probability measures $\mathbb{Q}^{(a)}$ on $\left(\Omega^{(a)}, \mathcal{F}^{(a)}\right)$.
- The actuarial entropy measure $\widetilde{\mathbb{Q}}^{(a)}$:

$$
I\left(\widetilde{\mathbb{Q}}^{(a)}, \mathbb{P}^{(a)}\right)=\min _{\mathbb{Q}^{(a)} \in \mathcal{M}^{(a)}} I\left(\mathbb{Q}^{(a)}, \mathbb{P}^{(a)}\right)
$$

- Solution:

$$
\widetilde{\mathbb{Q}}^{(a)} \equiv \mathbb{P}^{(a)}
$$

- In general:

$$
\widetilde{\mathbb{Q}}^{(f)} \equiv \widehat{\mathbb{Q}}^{(f)} \quad \text { but } \quad \widetilde{\mathbb{Q}}^{(a)} \neq \widehat{\mathbb{Q}}^{(a)}
$$

A market with only purely financial assets

Theorem

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ which is home to a market where only a risk-free bond and a purely financial asset are traded.
- $\widehat{\mathbb{Q}}^{(f)}$ and $\widehat{\mathbb{Q}}^{(a)}$: projections of the global entropy measure $\widehat{\mathbb{Q}}$.
- $\widetilde{\mathbb{Q}}^{(f)}$ and $\widetilde{\mathbb{Q}}^{(a)} \equiv \mathbb{P}^{(a)}$: financial and actuarial entropy measures.
- Then:

A market with only purely financial assets

Theorem

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ which is home to a market where only a risk-free bond and a purely financial asset are traded.
- $\widehat{\mathbb{Q}}^{(f)}$ and $\widehat{\mathbb{Q}}^{(a)}$: projections of the global entropy measure $\widehat{\mathbb{Q}}$.
- $\mathbb{Q}^{(f)}$ and $\mathbb{Q}^{(a)} \equiv \mathbb{P}^{(a)}$: financial and actuarial entropy measures.
- Then:

A market with only purely financial assets

Theorem

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ which is home to a market where only a risk-free bond and a purely financial asset are traded.
- $\widehat{\mathbb{Q}}^{(f)}$ and $\widehat{\mathbb{Q}}^{(a)}$: projections of the global entropy measure $\widehat{\mathbb{Q}}$.
- $\widetilde{\mathbb{Q}}^{(f)}$ and $\widetilde{\mathbb{Q}}^{(a)} \equiv \mathbb{P}^{(a)}$: financial and actuarial entropy measures.
- Then:

A market with only purely financial assets

Theorem

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ which is home to a market where only a risk-free bond and a purely financial asset are traded.
- $\widehat{\mathbb{Q}}^{(f)}$ and $\widehat{\mathbb{Q}}^{(a)}$: projections of the global entropy measure $\widehat{\mathbb{Q}}$.
- $\widetilde{\mathbb{Q}}^{(f)}$ and $\widetilde{\mathbb{Q}}^{(a)} \equiv \mathbb{P}^{(a)}$: financial and actuarial entropy measures.
- Then:

$$
\mathbb{P}=\mathbb{P}^{(f)} \times \mathbb{P}^{(a)} \Leftrightarrow \widehat{\mathbb{Q}}=\widehat{\mathbb{Q}}^{(f)} \times \widehat{\mathbb{Q}}^{(a)} \Leftrightarrow \widehat{\mathbb{Q}}=\widetilde{\mathbb{Q}}^{(f)} \times \mathbb{P}^{(a)}
$$

A market with purely financial and purely actuarial assets
The global world

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ and the following market of tradable assets:
- A risk-free bond (interest rate r)
- A purely financial security $\left(S^{(f)}(0)=s_{0}^{(f)}, S^{(f)}(1)\right)$
- A purely actuarial security $\left(S^{(a)}(0)=s_{0}^{(a)}, S^{(a)}(1)\right)$
- The class $\mathcal{M}=$ all probability measures \mathbb{Q} on (Ω, \mathcal{F}) satisfying

A market with purely financial and purely actuarial assets

The global world

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ and the following market of tradable assets:
- A risk-free bond (interest rate r).
- A purely actuarial security $\left(S^{(a)}(0)=s_{0}^{(a)}, S^{(a)}(1)\right)$
- The class $\mathcal{M}=$ all probability measures \mathbb{Q} on (Ω, \mathcal{F}) satisfying

A market with purely financial and purely actuarial assets

The global world

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ and the following market of tradable assets:
- A risk-free bond (interest rate r).
- A purely financial security $\left(S^{(f)}(0)=s_{0}^{(f)}, S^{(f)}(1)\right)$
\square
- A purely actuarial security

- The class $\mathcal{M}=$ all probability measures \mathbb{Q} on (Ω, \mathcal{F}) satisfying

A market with purely financial and purely actuarial assets

The global world

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ and the following market of tradable assets:
- A risk-free bond (interest rate r).
- A purely financial security $\left(S^{(f)}(0)=s_{0}^{(f)}, S^{(f)}(1)\right)$
- $S^{(f)}(1)=s_{i}^{(f)} \geq 0$ if the state of the world is (i, j).
- A purely actuarial security $\left(S^{(a)}(0)=s_{0}^{(a)}, S^{(a)}(1)\right)$
- The class $\mathcal{M}=$ all probability measures \mathbb{Q} on (Ω, \mathcal{F}) satisfying

A market with purely financial and purely actuarial assets

The global world

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ and the following market of tradable assets:
- A risk-free bond (interest rate r).
- A purely financial security $\left(S^{(f)}(0)=s_{0}^{(f)}, S^{(f)}(1)\right)$
- $S^{(f)}(1)=s_{i}^{(f)} \geq 0$ if the state of the world is (i, j).
- A purely actuarial security $\left(S^{(a)}(0)=s_{0}^{(a)}, S^{(a)}(1)\right)$
- The class $\mathcal{M}=$ all probability measures \mathbb{Q} on (Ω, \mathcal{F}) satisfying

A market with purely financial and purely actuarial assets

The global world

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ and the following market of tradable assets:
- A risk-free bond (interest rate r).
- A purely financial security $\left(S^{(f)}(0)=s_{0}^{(f)}, S^{(f)}(1)\right)$
- $S^{(f)}(1)=s_{i}^{(f)} \geq 0$ if the state of the world is (i, j).
- A purely actuarial security $\left(S^{(a)}(0)=s_{0}^{(a)}, S^{(a)}(1)\right)$
- $S^{(a)}(1)=s_{j}^{(a)}$ if the state of the world is (i, j).
- The class $\mathcal{M}=$ all probability measures \mathbb{Q} on (Ω, \mathcal{F}) satisfying

A market with purely financial and purely actuarial assets

The global world

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ and the following market of tradable assets:
- A risk-free bond (interest rate r).
- A purely financial security $\left(S^{(f)}(0)=s_{0}^{(f)}, S^{(f)}(1)\right)$
- $S^{(f)}(1)=s_{i}^{(f)} \geq 0$ if the state of the world is (i, j).
- A purely actuarial security $\left(S^{(a)}(0)=s_{0}^{(a)}, S^{(a)}(1)\right)$
- $S^{(a)}(1)=s_{j}^{(a)}$ if the state of the world is (i, j).
- The class $\mathcal{M}=$ all probability measures \mathbb{Q} on (Ω, \mathcal{F}) satisfying

$$
\left\{\begin{array}{l}
e^{-r} \mathbb{E}^{\mathrm{Q}}\left[S^{(f)}(1)\right]=s_{0}^{(f)} \\
e^{-r} \mathbb{E}^{\mathrm{Q}}\left[S^{(a)}(1)\right]=s_{0}^{(a)}
\end{array}\right.
$$

A market with purely financial and purely actuarial assets

The global world

- The global entropy measure $\widehat{\mathbb{Q}}$:

$$
I(\widehat{\mathbb{Q}}, \mathbb{P})=\min _{\mathbf{Q} \in \mathcal{M}} I(\mathbb{Q}, \mathbb{P})
$$

- Solution:

A market with purely financial and purely actuarial assets

The global world

- The global entropy measure $\widehat{\mathbb{Q}}$:

$$
I(\widehat{\mathbb{Q}}, \mathbb{P})=\min _{\mathbb{Q} \in \mathcal{M}} I(\mathbb{Q}, \mathbb{P})
$$

- Solution:

$$
\widehat{q}_{i j}=p_{i j} \times \frac{\exp \left(\hat{\lambda}^{(f)} s_{i}^{(f)}+\hat{\lambda}^{(a)} s_{j}^{(a)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\hat{\lambda}^{(f)} S^{(f)}(1)+\hat{\lambda}^{(a)} S^{(a)}(1)\right)\right]}
$$

A market with purely financial and purely actuarial assets

The global world

- The global entropy measure $\widehat{\mathbb{Q}}:$

$$
I(\widehat{\mathbb{Q}}, \mathbb{P})=\min _{\mathbb{Q} \in \mathcal{M}} I(\mathbb{Q}, \mathbb{P})
$$

- Solution:

$$
\widehat{q}_{i j}=p_{i j} \times \frac{\exp \left(\hat{\lambda}^{(f)} s_{i}^{(f)}+\hat{\lambda}^{(a)} s_{j}^{(a)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\hat{\lambda}^{(f)} S^{(f)}(1)+\hat{\lambda}^{(a)} S^{(a)}(1)\right)\right]}
$$

- $\underline{\hat{\lambda}}^{(f)}$ and $\hat{\lambda}^{(a)}$ follow from:

$$
\left\{\begin{array}{l}
\sum_{i, j} p_{i j} \times\left(s_{i}^{(f)}-e^{r} s_{0}^{(f)}\right) \exp \left(\lambda^{(f)} s_{i}^{(f)}+\lambda^{(a)} s_{j}^{(a)}\right)=0 \\
\sum_{i, j} p_{i j} \times\left(s_{j}^{(a)}-e^{r} s_{0}^{(a)}\right) \exp \left(\lambda^{(f)} s_{i}^{(f)}+\lambda^{(a)} s_{j}^{(a)}\right)=0
\end{array}\right.
$$

A market with purely financial and purely actuarial assets

The subworlds

- Consider the actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$ and the corresponding submarket.
- The class $\mathcal{M}^{(a)}=$ all probability measures $\mathbb{Q}^{(a)}$ on

- The actuarial entropy measure $\widetilde{\mathbb{Q}}^{(a)}$

A market with purely financial and purely actuarial assets

The subworlds

- Consider the actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$ and the corresponding submarket.
- The class $\mathcal{M}^{(a)}=$ all probability measures $\mathbb{Q}^{(a)}$ on $\left(\Omega^{(a)}, \mathcal{F}^{(a)}\right)$ with

$$
e^{-r} \mathbb{E}^{\mathbb{Q}^{(a)}}\left[S^{(a)}(1)\right]=s_{0}^{(a)}
$$

- The actuarial entropy measure $\widetilde{\mathbb{Q}}^{(a)}$

A market with purely financial and purely actuarial assets

The subworlds

- Consider the actuarial subworld $\left(\Omega^{(a)}, \mathcal{F}^{(a)}, \mathbb{P}^{(a)}\right)$ and the corresponding submarket.
- The class $\mathcal{M}^{(a)}=$ all probability measures $\mathbb{Q}^{(a)}$ on $\left(\Omega^{(a)}, \mathcal{F}^{(a)}\right)$ with

$$
e^{-r} \mathbb{E}^{\mathbb{Q}^{(a)}}\left[S^{(a)}(1)\right]=s_{0}^{(a)}
$$

- The actuarial entropy measure $\widetilde{\mathbb{Q}}^{(a)}$:

$$
I\left(\widetilde{\mathbb{Q}}^{(a)}, \mathbb{P}^{(a)}\right)=\min _{\mathbb{Q}^{(a)} \in \mathcal{M}^{(a)}} I\left(\mathbb{Q}^{(a)}, \mathbb{P}^{(a)}\right)
$$

A market with purely financial and purely actuarial assets
The subworlds

- The actuarial entropy measure $\widetilde{\mathbb{Q}}^{(a)}$:

$$
\widetilde{q}_{i}^{(a)}=p_{i}^{(a)} \times \frac{\exp \left(\tilde{\lambda}^{(a)} s_{k}^{(a)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\tilde{\lambda}^{(a)} S^{(a)}(1)\right)\right]}
$$

$\Rightarrow \tilde{\lambda}^{(a)}$ is the unique solution of:

- In general:

\rightarrow In case of \mathbb{P} - independence:

A market with purely financial and purely actuarial assets

The subworlds

- The actuarial entropy measure $\widetilde{\mathbb{Q}}^{(a)}$:

$$
\widetilde{q}_{i}^{(a)}=p_{i}^{(a)} \times \frac{\exp \left(\tilde{\lambda}^{(a)} s_{k}^{(a)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\tilde{\lambda}^{(a)} S^{(a)}(1)\right)\right]}
$$

- $\tilde{\lambda}^{(a)}$ is the unique solution of:

$$
\sum_{k} p_{k}^{(a)}\left(s_{k}^{(a)}-e^{r} s_{0}^{(a)}\right) \exp \left(\lambda^{(a)} s_{k}^{(a)}\right)=0
$$

- In general:

A market with purely financial and purely actuarial assets

The subworlds

- The actuarial entropy measure $\widetilde{\mathbb{Q}}^{(a)}$:

$$
\widetilde{q}_{i}^{(a)}=p_{i}^{(a)} \times \frac{\exp \left(\tilde{\lambda}^{(a)} s_{k}^{(a)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\tilde{\lambda}^{(a)} S^{(a)}(1)\right)\right]}
$$

- $\tilde{\lambda}^{(a)}$ is the unique solution of:

$$
\sum_{k} p_{k}^{(a)}\left(s_{k}^{(a)}-e^{r} s_{0}^{(a)}\right) \exp \left(\lambda^{(a)} s_{k}^{(a)}\right)=0
$$

- In general:

$$
\widetilde{\mathbb{Q}}^{(a)} \neq \widehat{\mathbb{Q}}^{(a)}
$$

- In case of \mathbb{P} - independence:

A market with purely financial and purely actuarial assets

The subworlds

- The actuarial entropy measure $\widetilde{\mathbb{Q}}^{(a)}$:

$$
\widetilde{q}_{i}^{(a)}=p_{i}^{(a)} \times \frac{\exp \left(\tilde{\lambda}^{(a)} s_{k}^{(a)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\tilde{\lambda}^{(a)} S^{(a)}(1)\right)\right]}
$$

- $\tilde{\lambda}^{(a)}$ is the unique solution of:

$$
\sum_{k} p_{k}^{(a)}\left(s_{k}^{(a)}-e^{r} s_{0}^{(a)}\right) \exp \left(\lambda^{(a)} s_{k}^{(a)}\right)=0
$$

- In general:

$$
\widetilde{\mathbf{Q}}^{(\mathrm{a})} \neq \widehat{\mathbf{Q}}^{(\mathrm{a})}
$$

- In case of \mathbb{P} - independence:

$$
\widetilde{\mathbb{Q}}^{(a)} \equiv \widehat{\mathbf{Q}}^{(a)}
$$

A market with purely financial and purely actuarial assets

The subworlds

- The actuarial entropy measure $\widetilde{\mathbb{Q}}^{(a)}$:

$$
\widetilde{q}_{i}^{(a)}=p_{i}^{(a)} \times \frac{\exp \left(\tilde{\lambda}^{(a)} s_{k}^{(a)}\right)}{\mathbb{E}^{\mathbb{P}}\left[\exp \left(\tilde{\lambda}^{(a)} S^{(a)}(1)\right)\right]}
$$

- $\tilde{\lambda}^{(a)}$ is the unique solution of:

$$
\sum_{k} p_{k}^{(a)}\left(s_{k}^{(a)}-e^{r} s_{0}^{(a)}\right) \exp \left(\lambda^{(a)} s_{k}^{(a)}\right)=0
$$

- In general:

$$
\widetilde{\mathbb{Q}}^{(a)} \neq \widehat{\mathbb{Q}}^{(a)}
$$

- In case of \mathbb{P} - independence:

$$
\widetilde{\mathbb{Q}}^{(a)} \equiv \widehat{\mathbb{Q}}^{(a)}
$$

- The financial entropy measure $\widetilde{\mathbb{Q}}^{(f)}$: similar.

A market with purely financial and purely actuarial assets

Theorem

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ which is home to a market where a risk-free bond, a purely financial and a purely actuarial asset are traded.
- $\widehat{\mathbb{Q}}^{(f)}$ and $\widehat{\mathbb{Q}}^{(a)}$: projections of the global entropy measure $\widehat{\mathbb{Q}}$
- $\widetilde{\mathbb{Q}}^{(f)}$ and $\widetilde{\mathbb{Q}}^{(a)}$: financial and actuarial entropy measures.
- Then:

A market with purely financial and purely actuarial assets

Theorem

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ which is home to a market where a risk-free bond, a purely financial and a purely actuarial asset are traded.
- $\widehat{\mathbb{Q}}^{(f)}$ and $\widehat{\mathbb{Q}}^{(a)}$: projections of the global entropy measure $\widehat{\mathbb{Q}}$.
- $\mathbb{Q}^{(f)}$ and $\mathbb{Q}^{(a)}$: financial and actuarial entropy measures.
- Then:

A market with purely financial and purely actuarial assets

Theorem

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ which is home to a market where a risk-free bond, a purely financial and a purely actuarial asset are traded.
- $\widehat{\mathbb{Q}}^{(f)}$ and $\widehat{\mathbb{Q}}^{(a)}$: projections of the global entropy measure $\widehat{\mathbb{Q}}$.
- $\widetilde{\mathbb{Q}}^{(f)}$ and $\widetilde{\mathbb{Q}}^{(a)}$: financial and actuarial entropy measures.
- Then:

A market with purely financial and purely actuarial assets

Theorem

- Consider the global world $(\Omega, \mathcal{F}, \mathbb{P})$ which is home to a market where a risk-free bond, a purely financial and a purely actuarial asset are traded.
- $\widehat{\mathbb{Q}}^{(f)}$ and $\widehat{\mathbb{Q}}^{(a)}$: projections of the global entropy measure $\widehat{\mathbb{Q}}$.
- $\widetilde{\mathbb{Q}}^{(f)}$ and $\widetilde{\mathbb{Q}}^{(a)}$: financial and actuarial entropy measures.
- Then:

$$
\mathbb{P}=\mathbb{P}^{(f)} \times \mathbb{P}^{(a)} \Leftrightarrow \widehat{\mathbb{Q}}=\widehat{\mathbb{Q}}^{(f)} \times \widehat{\mathbb{Q}}^{(a)} \Leftrightarrow \widehat{\mathbb{Q}}=\widetilde{\mathbb{Q}}^{(f)} \times \widetilde{\mathbb{Q}}^{(a)}
$$

General conclusions

- \mathbb{P}-independence between financial and actuarial risks does not imply \mathbb{Q} - independence.
- Q-independence is convenient, but has in general no intuitive meaning.
- Fven under \mathbb{P}-independence, there exist arbitrage-free and (in-)complete markets (with a tradable combined asset) without a Q-measure that maintains the independence property.
- Postulating a Q-measure with the independence property and calibrating the model to observed market prices may lead to inconsistencies.
- In a market where only pure financial and pure actuarial risks are traded, \mathbb{P}-independence implies \mathbb{Q}-independence.

General conclusions

- \mathbb{P}-independence between financial and actuarial risks does not imply \mathbb{Q} - independence.
- Q-independence is convenient, but has in general no intuitive meaning.
- Even under \mathbb{P}-independence, there exist arbitrage-free and (in-)complete markets (with a tradable combined asset) without a Q-measure that maintains the independence property.
- Postulating a Q-measure with the independence property and calibrating the model to observed market prices may lead to inconsistencies.
- In a market where only pure financial and pure actuarial risks are traded, \mathbb{P}-independence implies \mathbb{Q}-independence.

General conclusions

- \mathbb{P}-independence between financial and actuarial risks does not imply \mathbb{Q} - independence.
- Q-independence is convenient, but has in general no intuitive meaning.
- Even under \mathbb{P}-independence, there exist arbitrage-free and (in-)complete markets (with a tradable combined asset) without a Q-measure that maintains the independence property.
- Postulating a Q-measure with the independence property and calibrating the model to observed market prices may lead to inconsistencies.
- In a market where only pure financial and pure actuarial risks are traded, \mathbb{P}-independence implies \mathbb{Q}-independence.

General conclusions

- \mathbb{P}-independence between financial and actuarial risks does not imply \mathbb{Q} - independence.
- Q-independence is convenient, but has in general no intuitive meaning.
- Even under \mathbb{P}-independence, there exist arbitrage-free and (in-)complete markets (with a tradable combined asset) without a Q-measure that maintains the independence property.
- Postulating a Q-measure with the independence property and calibrating the model to observed market prices may lead to inconsistencies.
- In a market where only pure financial and pure actuarial risks
are traded, \mathbb{P}-independence implies $\widehat{\mathbb{Q}}$-independence.

General conclusions

- \mathbb{P}-independence between financial and actuarial risks does not imply \mathbb{Q} - independence.
- Q-independence is convenient, but has in general no intuitive meaning.
- Even under \mathbb{P}-independence, there exist arbitrage-free and (in-)complete markets (with a tradable combined asset) without a Q-measure that maintains the independence property.
- Postulating a Q-measure with the independence property and calibrating the model to observed market prices may lead to inconsistencies.
- In a market where only pure financial and pure actuarial risks are traded, \mathbb{P}-independence implies $\widehat{\mathbb{Q}}$-independence.

Further research

- Dependency structure conserving conditions:

When does $\mathrm{PQD}_{\mathbb{P}}[X, Y]$ imply $\mathrm{PQD}_{\mathrm{Q}}[X, Y]$?

- Stochastic order conserving conditions:

$$
\text { When does } X \leq_{\mathbb{P}-c x} Y \text { imply } X \leq_{\mathbb{Q}-c x} Y \text { ? }
$$

- Fair valuation of insurance liabilities:

Further research

- Dependency structure conserving conditions:

$$
\text { When does } \mathrm{PQD}_{\mathbb{P}}[X, Y] \text { imply } \mathrm{PQD}_{\mathrm{Q}}[X, Y] \text { ? }
$$

- Stochastic order conserving conditions:

When does $X \leq_{\mathbb{P}-c x} Y$ imply $X \leq_{\mathbb{Q}-c x} Y$?

- Fair valuation of insurance liabilities:

Further research

- Dependency structure conserving conditions:

When does $\mathrm{PQD}_{\mathbb{P}}[X, Y]$ imply $\mathrm{PQD}_{\mathrm{Q}}[X, Y]$?

- Stochastic order conserving conditions:

$$
\text { When does } X \leq_{\mathbb{P}-c x} Y \text { imply } X \leq_{\mathbb{Q}-c x} Y \text { ? }
$$

- Fair valuation of insurance liabilities:

$$
\widehat{\mathbb{Q}}^{(1)} \times \mathbb{P}^{(2)}
$$

References I

- Dhaene J., Kukusk A., Luciano E., Schoutens W., Stassen B. (2013). On the (in-)dependence between financial and actuarial risks. Insurance: Mathematics \& Economics, 52(3), 522-531.
- Dhaene J., Stassen B., Vellekoop M., Devolder P. (2013). The Minimal Entropy Martingale Measure in a combined financial-actuarial world. Work in progress.
- Frittelli M. (1995). Minimal entropy criterion for pricing in one period incomplete markets. Working Paper 99, Dip. Met. Quant., University of Brescia, Italy.
- Frittelli M. (2000). The minimal entropy martingale measure and the valuation problem in incomplete markets. Mathematical
Finance, 10(1), 39-52.

Contact

- Jan.Dhaene@kuleuven.be
- Ben.Stassen@kuleuven.be
- Actuarial Research Group, KU Leuven Naamsestraat 69
B-3000 Leuven
- Website: http://www.kuleuven.be/insurance

[^0]: - Real-world probability measure $\mathbb{P}\left({ }^{(1)}\right.$:

