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» with payoffs contingent on the outcome of quantities related to
this underwriting risk.

» Examples:

» Catastrophe bonds.
> Longevity bonds.

» Modeling and pricing insurance-linked securities:

» Financial and actuarial risks.
» Dependence between financial and actuarial risks.
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Consider a market of tradable assets in this combined world.

v

v

Assume that this market is arbitrage-free.
Physical probability measure IP:

v

» Used for probability statements about future evolutions of
financial and actuarial risks.

v

Pricing probability measure Q:

» Used for expressing prices of tradable assets.

> Price recipy:
The current price S(0) of a traded asset with pay-off S(T) at
time T can be expressed as:

5(0) = e T EQ[S(T)]
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> defined on (Q), Fr, (Ft)o<t<T .Q),

» Corrg [W(l

(5, W ()] =p.

» Consider the asset prices S™)(t) and S (t).
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A general setting

» For a general asset pricing model:

» IP - copula # Q - copula.
» IP - independence ¥ Q - independence.
» IP - comonotonicity < Q - comonotonicity.

» Assuming independence between financial and actuarial risks:

» IP - independence might be a reasonable assumption.

» Q - independence is a convenient assumption.

> IP - independence # Q - independence.

> |s there any relation between IP - and Q - independence?

~
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» We consider time 0 (= now) and time 1.

» Risks = r.v.'s of which outcome is known at time 1:

» Pure financial risks (stock price at time 1).
> Pure biometrical risks (survival index of population at time 1).

» A market of tradable assets:

» Their current (time-0) prices are known.
» Their time-1 prices are outcomes of financial / biometrical
risks.
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The financial world
» Risk-free bond:
> Interest rate r = 0.

» Stock:

> Current price: S (0) =10
> Price at time 1: S()(1), WhICh is either 50 or 150.

» Financial world:

(g(l), fu),]p(l))

» Universe:
D = {50,150}

> Real-world probabilities:

PM) [50] >0 and P [150] > 0
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» Universe:
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> Real-world probabilities:
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> Universe:
0=0W x0® = {(50,0),(50,1), (150,0), (150,1)}

> Real-world probabilities:

» Financial and biometrical risks are assumed to be independent:

P=PL xP®

> This means:

IP [50,0] = IP(V) [50] x ]P(2> [0] >0
P[50, 1] = P(V) [50] x [1] >0
IP[150,0] = P(1) [150] x P2 [o] >0
PP [150,1] = P [150] x P(?) [1] > 0
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» Q and P are equivalent.
» The current price 5(0) of any tradable asset with pay-off S(1)

at time 1 can be expressed as

5(0) = EQ[S(1)

» Fundamental Theorems of Asset Pricing:

» The market is arbitrage-free if and only if there exists an

equivalent martingale measure Q.
> The arbitrage-free market is complete if and only if there exists

a unique equivalent martingale measure Q.
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» Projection of Q on the financial world: Q(l).

QW [50] = Q[50,0] +Q 50, 1]
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» Conclusions:
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> In this market, there are pricing measures:

» which maintain the independency property: @(1) X @(2),
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» Equivalent with: Find positive Q [50, 0], ... satisfying
QW [50] =

Q<1) [150] =
Q¥ [0] = 0
Q@[] =07

) ~0 _ /® - . . ..

» Qand Q Q" (defined earlier) are 2 particular pricing
measures.

» Conclusions:
» The market is arbitrage-free but incomplete.
» Under Q, the independence property is not maintained
—(1) _ =(2) . . . . N
> Q( ) X Q( ) is the unique pricing measure which maintains the

independence property.
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A combined financial-biometrical world

A complete market with 2 financial, 1 biometrical and 1 combined security

> Traded securities:
Risk-free bond: r = 0.
Stock: S,
Biometrical security: 52,
Combined security:
> Current price: S(0) € (10, 25).
> Pay-off at time 1:

S(1) = (100 - 5<1>(1))+ x T(1)

v

vV VvVYvy

» Determining Q: Find positive Q [50, 0], ... satisfying

W (1)| =100
@)(1)] =70

)
[ ( )] = 5(0)
Q 50, 0] + Q[150,0] + Q[50,1] + Q[150, 1] =
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A complete market with 2 financial, 1 biometrical and 1 combined security

» Unique pricing measure @:

Q[(50,0)] = 235
Q[(150,0)] = —%=50)
Q[(50,1)] = 519

Q[(150,1)] = 230

» The market is arbitrage-free and complete.

» The unique pricing measure maintains the independence
property if and only if 5(0) = 17.5.

» In case 5(0) ¢ (10,25): the market is not arbitrage-free.

» Conclusion:

> In an arbitrage-free and complete market, it may happen that
the unique pricing measure does not maintain the
independence property.
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(g(l),;r(l),lpu))

» Universe:
ol = {B,M,R}

» Booming economy, Moderate growth, Recession.

> Real-world probabilities:

PY[B] >0, PM[M] > 0and PD[R] >0

» Biometrical world: (Q<2>,f(2),]1°<2>) as defined before.
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Another combined financial-biometrical world
The global world

» Global world:

(Q,F,P)

» Universe:
0=00 xn®

> Real-world probabilities:

Financial and biometrical risks are assumed to be independent:

P=PD x P®
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Another combined financial-biometrical world

An incomplete market with 2 financial, 1 biometrical and 1 combined security

» Determining Q: Find positive Q [B, 0], ... satisfying:

sM(1)| =50
s@1)| =70
[5(1)] 5(0)
Q[B.0] +Q[M,0] +...+Q[R 1] =
> Equivalent with: Find positive Q [B,O], ... satisfying;
[ ] 100
Q[B.1] = 501050 )
Q[M,0]+Q[R,0] = 30150(0)
Q[M,1]+ QIR 1] = 25%

» Conclusion: the market is arbitrage-free and incomplete,

provided S(0) € (0, 30).
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An incomplete market with 2 financial, 1 biometrical and 1 combined security

» Pricing measures with the independence property:

» For any Q, one has that
Q[B,0] = QW [B] x Q@ [0] <= 5(0) =15

> If S(0) # 15, there exists no pricing measure with the
indepence property.
> If 5(0) = 15, several pricing measures with the independence
property exist.
» Conclusion:
Also in an arbitrage-free and incomplete market it may be
impossible to find a pricing measure Q that maintains the
independence property.
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» There exists more than 1 equivalent martingale measure.

» There is no unique arbitrage-free price for non-replicable
contingent claims.

» How to select a particular pricing measure?

» Chosing the measure @ that is closest to IP.
» Closeness is defined in terms of relative entropy.

» Q = Minimal Entropy Martingale Measure®.

» Part | vs. Part |l:

> Part I: IP-independence does not imply Q-independence.
» Part Il: Does IP-independence imply Q-independence?

3Frittelli (1995,2000).
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The global world

v

v

The universe:

Q= {(i,j) li=1,..n" andj= 1,...,n(a>},

» Any (i,j) corresponds to a global state of the world:
» | = financial substate of the world,
» j = actuarial substate of the world.

v

Events: F = set of all subsets of Q).

v

Real-world probability measure IP:

P{(i,/)] = pj > 0

Consider a single period, finite state world (Q), 7, P).
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» A market of tradable assets in the global world (Q), F,IP):

> Risk-free bond (interest rate r).
» A security: (5(0), S(1))

» 5(0) =sp > 0.
> S(1) = s; > 0 if the state of the world is (7, ).

» A purely financial security: (S(f)(O), S(f)(l))

> s ) =5\ > 0.
s > 0 if the state of the world is (i,).

1

> A purely actuarial security: (S("")(O), 5("”)(1))

» s((0) =5\ > 0.
» 5@)(1) = sj(a) > 0 if the state of the world is (7, ).
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» The financial subworld (Q(f),]:(f),ll’(f)>:

» Financial universe:

o) :{i\i:1,2,...,n(f>}

» Financial events: F(f) = set of all subsets of Q(f).
» Real-world probability measure P():

n(a) )
=Y. pj=p >0
j=1

> A purely financial security: (S(f)(O), S(f)(l))

> 5 (0) =" > 0.
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Pricing assets in the global market

Equivalent martingale measures

» Consider a market of tradable assets in the global world
(Q,F,P).
» We assume that this market is arbitrage-free.

» There exists at least 1 equivalent martingale measure Q:
QI[(i.J)] = gy

» The projections Q") and Q@ of Q to the subworlds:

"= @ _
g ' =) = and q” =) g
j=1 i=1

» Q) and Q@ are equivalent martingale measures for the
respective submarkets in the subworlds.
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» The probability measure Q) x Q).

(Q(f) % Q(a)) [(i,))] = qlgf) % qj(a)

» IP-independence:

f‘
pi =p." x p”
» -independence:
f
aj = a" x q”

» Q) x Q@ in general not equivalent martingale measure.

» P=P") x P& = P and Q(f) x Q) are equivalent.
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The Minimal Entropy Martingale Measure

Relative entropy (Kulback-Leibner information)

» Consider the probability measures IP and Q defined on (Q), F).
» Relative entropy of Q wrt IP:

1(Q,P) = Zi,j gij In (%)

» sum over all /,j with pjj > 0.
» 0In0 = 0 by convention.

> Properties:

» 1(Q,P) >0.

» 1 (QP)=0Q=P.

» | (Q,P) increases if the measures 'diverge’.

» | (Q,P) is not a 'distance’ in the strict sense.
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The Minimal Entropy Martingale Measure

The global entropy measure

v

Consider the global world (Q), F,IP).
This world is home to a market of tradable assets.

v

v

M = the (non-empty) set of all martingale measures.

The Minimal Entropy Martingale Measure Q € M
satisfies*:

v

(@r)- gy P

v

We will call @ the 'global entropy measure’.

v

The global entropy measure always exists and is unique.

*Frittelli (1995, 2000)
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» A is the unique solution of
F) ((F f f
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i

> @ is equivalent to IP.
» Q is an Esscher transform of IP.

» Projection of @ to the financial subworld:
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A market with only purely financial assets

The financial subworld

» The financial entropy measure Q).

~ir)_ (n . ee(is”)
q; =P X E¥ [exp (A S0

)l

» Relation between the entropy measures @(f) and @:

Q(f)

Q)

» The financial entropy measure is identical to the projection of
the global entropy measure on the financial subworld.
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A market with only purely financial assets

The actuarial subworld

» Consider the actuarial subworld (Q("’), f(a),]P(a)) and the
corresponding actuarial submarket.
The class M (@) = all probability measures Q@ on

(g(a), ;c(a))_

The actuarial entropy measure @(a):

v

v

v

Solution:

v

In general:
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measures.

» Then:
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» Consider the global world (€, F,P) and the following
market of tradable assets:

> A risk-free bond (interest rate r).
> A purely financial security (S(f)(O) = séf), S(f)(l))

» s((1) = s,-m > 0 if the state of the world is (/).

> A purely actuarial security (S<3)(0) = s(ga), 5(3)(1))

> 5()(1) = 51 if the state of the world is (i,J).

» The class M = all probability measures Q on (Q, F)
satisfying
e " EQ|S(1)| = séf)

e " EQ (s (1)| = &)
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The global world
» The global entropy measure @:

» Solution:

(a)

follow from:

> X(f) and A
Yopix (57 = e i) exp (A 1252} — 0
ij

Zpij X (5}3) — e 5(%8)) exp (/\(f)si(f) "‘)\(a)sj(a)) _o
i
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» Consider the actuarial subworld (Q("”), .7-"(3),113(")) and the
corresponding submarket.

» The class M@ = all probability measures Q@ on
(@@, F@) with

e~r EQ” [5(‘3)(1)} = séa)

» The actuarial entropy measure @(3):

/ (Q(a),P(a)) = min I(Q(a),]P(a)>

QB eM)
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The subworlds

» The actuarial entropy measure @(a):
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The subworlds

» The actuarial entropy measure @(a):

o @, ()
A oo (17 50|

> X(a) is the unique solution of:
(@) () _ r (a) (a) ()
p S e’ s exp (A's =0
; k ( K 0 ) ( K )

In general:

v

Q@ £ 9@

In case of IP - independence:

v

Q@ =)

The financial entropy measure @(f): similar.

v
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A market with purely financial and purely actuarial assets

Theorem

» Consider the global world (Q), F,IP) which is home to a
market where a risk-free bond, a purely financial and a purely
actuarial asset are traded.

> @(f) and @(a): projections of the global entropy measure @
> @(f) and @(a): financial and actuarial entropy measures.
» Then:

P=PHxP® < Q=0" xQ@ < Q=0Q" xQ®
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meaning.

» Even under P-independence, there exist arbitrage-free and
(in-)complete markets (with a tradable combined asset)
without a Q-measure that maintains the independence
property.

» Postulating a Q-measure with the independence property
and calibrating the model to observed market prices
may lead to inconsistencies.

» In a market where only pure financial and pure actuarial risks
are traded, IP-independence implies Q-independence.
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> Stochastic order conserving conditions:

When does X <p_., Y imply X <g_ Y 7

» Fair valuation of insurance liabilities:

oW » p@
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