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Part I - Introduction
Insurance-linked securities

I Insurance securitization:
I Transfer of underwriting risk to capital markets,
I through issuance of �nancial securities,
I with payo¤s contingent on the outcome of quantities related to
this underwriting risk.

I Examples:
I Catastrophe bonds.
I Longevity bonds.

I Modeling and pricing insurance-linked securities:
I Financial and actuarial risks.
I Dependence between �nancial and actuarial risks.
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Introduction
Probabilities

I The combined �nancial-actuarial world:�
Ω,F , (Ft )0�t�T

�
I Consider a market of tradable assets in this combined world.
I Assume that this market is arbitrage-free.
I Physical probability measure P:

I Used for probability statements about future evolutions of
�nancial and actuarial risks.

I Pricing probability measure Q:
I Used for expressing prices of tradable assets.
I Price recipy:
The current price S(0) of a traded asset with pay-o¤ S(T ) at
time T can be expressed as:

S(0) = e�rT EQ [S(T )]
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Introduction
A Black & Scholes - setting

I A correlated Brownian motion process:

I
n�
B(1) (t) ,B(2) (t)

�
j 0 � t � T

o
,

I de�ned on
�
Ω,FT , (Ft )0�t�T ,P

�
,

I (Ft )0�t�T is the �natural �ltration�induced by this process,
I CorrP

h
B(1) (t) ,B(2) (t)

i
= ρ.

I A market of tradable assets:
a deterministic risk-free interest rate r ,
a �nancial asset(1) and an actuarial asset(2).

I P-dynamics of asset prices:

dS (i )(t)
S (i )(t)

= µ(i )dt + σ(i )dB (i ) (t) , i = 1, 2.

I We assume that this market is arbitrage-free.
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Introduction
A Black & Scholes - setting

I Q-dynamics of asset prices:

dS (i )(t)
S (i )(t)

= r dt + σ(i )dW (i ) (t) , i = 1, 2.

I
�
W (1) (t) , W (2) (t)

�
: correlated Brownian motion process,

I de�ned on
�
Ω,FT , (Ft )0�t�T ,Q

�
,

I CorrQ
h
W (1) (t) ,W (2) (t)

i
= ρ.

I Consider the asset prices S (1)(t) and S (2) (t).

I P - independence , Q - independence.
I P - copula = Q - copula.
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Introduction
A general setting

I For a general asset pricing model:
I P - copula 6= Q - copula.
I P - independence < Q - independence.
I P - comonotonicity , Q - comonotonicity.

I Assuming independence between �nancial and actuarial risks:
I P - independence might be a reasonable assumption.
I Q - independence is a convenient assumption.
I P - independence ; Q - independence.
I Is there any relation between P - and Q - independence?
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A (simple) combined �nancial-biometrical world

I A simple world: (Ω,F ,P)
I Single period, �nite state setting.
I We consider time 0 (= now) and time 1.

I Risks = r.v.�s of which outcome is known at time 1:
I Pure �nancial risks (stock price at time 1).
I Pure biometrical risks (survival index of population at time 1).

I A market of tradable assets:
I Their current (time-0) prices are known.
I Their time-1 prices are outcomes of �nancial / biometrical
risks.
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A combined �nancial-biometrical world
The �nancial world

I Risk-free bond:
I Interest rate r = 0.

I Stock:
I Current price: S (1)(0) = 100.
I Price at time 1: S (1)(1), which is either 50 or 150.

I Financial world: �
Ω(1),F (1),P(1)

�
I Universe:

Ω(1) = f50, 150g
I Real-world probabilities:

P(1) [50] > 0 and P(1) [150] > 0
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A combined �nancial-biometrical world
The biometrical world

I Survival index of a given population:

I I (1) = value of survival index at time 1.
I I (1) = 0 : �few�survive.
I I (1) = 1 : �many�survive.

I Biometrical world: �
Ω(2),F (2),P(2)

�
I Universe:

Ω(2) = f0, 1g .
I Real-world probabilities:

P(2) [0] > 0 and P(2) [1] > 0
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A combined �nancial-biometrical world
The global world

I Global world:
(Ω,F ,P)

I Universe:

Ω = Ω(1) �Ω(2) = f(50, 0) , (50, 1) , (150, 0) , (150, 1)g

I Real-world probabilities:
I Financial and biometrical risks are assumed to be independent:

P � P(1) �P(2)

I This means:8>>><>>>:
P [50, 0] = P(1) [50]�P(2) [0] > 0
P [50, 1] = P(1) [50]�P(2) [1] > 0
P [150, 0] = P(1) [150]�P(2) [0] > 0
P [150, 1] = P(1) [150]�P(2) [1] > 0
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A combined �nancial-biometrical world
Equivalent martingale measures

I Supppose that the global world (Ω,F ,P) is home to a
market of tradable assets.

I Q is an equivalent martingale measure if:
I Q is a probability measure on (Ω,F ).
I Q and P are equivalent.
I The current price S(0) of any tradable asset with pay-o¤ S(1)
at time 1 can be expressed as

S(0) = EQ [S(1)]

I Fundamental Theorems of Asset Pricing:
I The market is arbitrage-free if and only if there exists an
equivalent martingale measure Q.

I The arbitrage-free market is complete if and only if there exists
a unique equivalent martingale measure Q.
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A combined �nancial-biometrical world
Equivalent martingale measures

I Projection of Q on the �nancial world: Q(1).�
Q(1) [50] = Q [50, 0] +Q [50, 1]
Q(1) [150] = Q [150, 0] +Q [150, 1]

I Projection of Q on the biometrical world: Q(2).

I The product measure Q(1) �Q(2):�
Q(1) �Q(2)

�
[ω1,ω2] = Q(1) [ω1]�Q(2) [ω2]

I Financial and biometrical risks are independent under Q if

Q � Q(1) �Q(2)
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A combined �nancial-biometrical world
An incomplete market with 2 purely �nancial securities

I Traded securities:
I Risk-free bond: r = 0.
I Stock:

I Current price: S (1)(0) = 100.
I Pay-o¤ at time 1: S (1)(1) 2 f50, 150g.

I Determining Q: Find positive Q [50, 0] , . . . satisfying(
EQ

h
S (1)(1)

i
= 100

Q [50, 0] +Q [150, 0] +Q [50, 1] +Q [150, 1] = 1

I Equivalent with: Find positive Q [50, 0] , . . . satisfying�
Q(1) [50] = 0.5
Q(1) [150] = 0.5
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I Two particular pricing measures:

8>><>>:
Q [50, 0] = 0.2
Q [150, 0] = 0.1
Q [50, 1] = 0.3
Q [150, 1] = 0.4

and

8>>>><>>>>:
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I Conclusions:
I The market is arbitrage-free but incomplete.
I In this market, there are pricing measures:

I which maintain the independency property: Q
(1) �Q

(2)
,

I which do not maintain the independence property: Q.
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A combined �nancial-biometrical world
An incomplete market with 2 purely �nancial and 1 purely biometrical security

I Equivalent with: Find positive Q [50, 0] , . . . satisfying8>><>>:
Q(1) [50] = 0.5
Q(1) [150] = 0.5
Q(2) [0] = 0.3
Q(2) [1] = 0.7

I Q and Q
(1) �Q

(2)
(de�ned earlier) are 2 particular pricing

measures.
I Conclusions:

I The market is arbitrage-free but incomplete.
I Under Q, the independence property is not maintained.
I Q

(1) �Q
(2)
is the unique pricing measure which maintains the

independence property.

17 / 48



A combined �nancial-biometrical world
An incomplete market with 2 purely �nancial and 1 purely biometrical security

I Equivalent with: Find positive Q [50, 0] , . . . satisfying8>><>>:
Q(1) [50] = 0.5
Q(1) [150] = 0.5
Q(2) [0] = 0.3
Q(2) [1] = 0.7

I Q and Q
(1) �Q

(2)
(de�ned earlier) are 2 particular pricing

measures.
I Conclusions:

I The market is arbitrage-free but incomplete.
I Under Q, the independence property is not maintained.
I Q

(1) �Q
(2)
is the unique pricing measure which maintains the

independence property.

17 / 48



A combined �nancial-biometrical world
An incomplete market with 2 purely �nancial and 1 purely biometrical security

I Equivalent with: Find positive Q [50, 0] , . . . satisfying8>><>>:
Q(1) [50] = 0.5
Q(1) [150] = 0.5
Q(2) [0] = 0.3
Q(2) [1] = 0.7

I Q and Q
(1) �Q

(2)
(de�ned earlier) are 2 particular pricing

measures.
I Conclusions:

I The market is arbitrage-free but incomplete.
I Under Q, the independence property is not maintained.
I Q

(1) �Q
(2)
is the unique pricing measure which maintains the

independence property.

17 / 48



A combined �nancial-biometrical world
An incomplete market with 2 purely �nancial and 1 purely biometrical security

I Equivalent with: Find positive Q [50, 0] , . . . satisfying8>><>>:
Q(1) [50] = 0.5
Q(1) [150] = 0.5
Q(2) [0] = 0.3
Q(2) [1] = 0.7

I Q and Q
(1) �Q

(2)
(de�ned earlier) are 2 particular pricing

measures.
I Conclusions:

I The market is arbitrage-free but incomplete.
I Under Q, the independence property is not maintained.
I Q

(1) �Q
(2)
is the unique pricing measure which maintains the

independence property.

17 / 48



A combined �nancial-biometrical world
An incomplete market with 2 purely �nancial and 1 purely biometrical security

I Equivalent with: Find positive Q [50, 0] , . . . satisfying8>><>>:
Q(1) [50] = 0.5
Q(1) [150] = 0.5
Q(2) [0] = 0.3
Q(2) [1] = 0.7

I Q and Q
(1) �Q

(2)
(de�ned earlier) are 2 particular pricing

measures.
I Conclusions:

I The market is arbitrage-free but incomplete.
I Under Q, the independence property is not maintained.
I Q

(1) �Q
(2)
is the unique pricing measure which maintains the

independence property.

17 / 48



A combined �nancial-biometrical world
An incomplete market with 2 purely �nancial and 1 purely biometrical security

I Equivalent with: Find positive Q [50, 0] , . . . satisfying8>><>>:
Q(1) [50] = 0.5
Q(1) [150] = 0.5
Q(2) [0] = 0.3
Q(2) [1] = 0.7

I Q and Q
(1) �Q

(2)
(de�ned earlier) are 2 particular pricing

measures.
I Conclusions:

I The market is arbitrage-free but incomplete.
I Under Q, the independence property is not maintained.
I Q

(1) �Q
(2)
is the unique pricing measure which maintains the

independence property.

17 / 48



A combined �nancial-biometrical world
A complete market with 2 �nancial, 1 biometrical and 1 combined security

I Traded securities:
I Risk-free bond: r = 0.
I Stock: S (1).
I Biometrical security: S (2).
I Combined security:

I Current price: S(0) 2 (10, 25).
I Pay-o¤ at time 1:

S(1) =
�
100� S (1)(1)

�
+
� I(1)

I Determining Q: Find positive Q [50, 0] , . . . satisfying8>>>><>>>>:
EQ

h
S (1)(1)

i
= 100

EQ
h
S (2)(1)

i
= 70

EQ [S(1)] = S(0)
Q [50, 0] +Q [150, 0] +Q [50, 1] +Q [150, 1] = 1
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A combined �nancial-biometrical world
A complete market with 2 �nancial, 1 biometrical and 1 combined security

I Unique pricing measure eQ:8>>><>>>:
eQ [(50, 0)] = 25�S (0)

50eQ [(150, 0)] = �10+S (0)
50eQ [(50, 1)] = S (0)

50eQ [(150, 1)] = 35�S (0)
50

I The market is arbitrage-free and complete.
I The unique pricing measure maintains the independence
property if and only if S(0) = 17.5.

I In case S(0) /2 (10, 25): the market is not arbitrage-free.
I Conclusion:

I In an arbitrage-free and complete market, it may happen that
the unique pricing measure does not maintain the
independence property.
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I In case S(0) /2 (10, 25): the market is not arbitrage-free.
I Conclusion:

I In an arbitrage-free and complete market, it may happen that
the unique pricing measure does not maintain the
independence property.
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Another (simple) combined �nancial-biometrical world
The �nancial and the biometrical world

I Financial world: �
Ω(1),F (1),P(1)

�
I Universe:

Ω(1) = fB,M,Rg

I Booming economy, Moderate growth, Recession.

I Real-world probabilities:

P(1)[B ] > 0, P(1)[M ] > 0 and P(1)[R ] > 0

I Biometrical world:
�

Ω(2),F (2),P(2)
�
as de�ned before.
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Another combined �nancial-biometrical world
The global world

I Global world:
(Ω,F ,P)

I Universe:
Ω = Ω(1) �Ω(2)

I Real-world probabilities:
Financial and biometrical risks are assumed to be independent:

P � P(1) �P(2)
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Another combined �nancial-biometrical world
An incomplete market with 2 �nancial, 1 biometrical and 1 combined security

I Traded securities:
I Risk-free bond: r = 0.
I Financial security: Current price: S (1)(0) = 50.

I Pay-o¤ at time 1:

S (1)(1) =
�
100, if B
0, otherwise

I Biometrical security: Current price: S (2)(0) = 70.
I Pay-o¤ at time 1:

S (2)(1) = 100� I(1)

I Combined security: Current price: S(0) 2 (0, 30).
I Pay-o¤ at time 1:

S(1) = S (1)(1)� (1� I(1))
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Another combined �nancial-biometrical world
An incomplete market with 2 �nancial, 1 biometrical and 1 combined security

I Determining Q: Find positive Q [B, 0] , . . . satisfying:8>>>><>>>>:
EQ

h
S (1)(1)

i
= 50

EQ
h
S (2)(1)

i
= 70

EQ [S(1)] = S(0)
Q [B, 0] +Q [M, 0] + . . .+Q [R, 1] = 1

I Equivalent with: Find positive Q [B, 0] , . . . satisfying:8>>><>>>:
Q [B, 0] = S (0)

100

Q [B, 1] = 50�S (0)
100

Q [M, 0] +Q [R, 0] = 30�S (0)
100

Q [M, 1] +Q [R, 1] = 20+S (0)
100

I Conclusion: the market is arbitrage-free and incomplete,
provided S(0) 2 (0, 30).
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Another combined �nancial-biometrical world
An incomplete market with 2 �nancial, 1 biometrical and 1 combined security

I Pricing measures with the independence property:
I For any Q, one has that

Q [B, 0] = Q(1) [B ]�Q(2) [0]() S(0) = 15

I If S(0) 6= 15, there exists no pricing measure with the
indepence property.

I If S(0) = 15, several pricing measures with the independence
property exist.

I Conclusion:
Also in an arbitrage-free and incomplete market it may be
impossible to �nd a pricing measure Q that maintains the
independence property.
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Part II - Introduction
Chosing a pricing measure in an incomplete market

I Consider an arbitrage-free market of tradable assets in a
combined �nancial - actuarial world.

I Suppose that this market is incomplete.
I There exists more than 1 equivalent martingale measure.
I There is no unique arbitrage-free price for non-replicable
contingent claims.

I How to select a particular pricing measure?

I Chosing the measure bQ that is closest to P.
I Closeness is de�ned in terms of relative entropy.
I bQ = Minimal Entropy Martingale Measure3.

I Part I vs. Part II:
I Part I: P-independence does not imply Q-independence.
I Part II: Does P-independence imply bQ-independence?

3Frittelli (1995,2000).
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The global world

I Consider a single period, �nite state world (Ω,F ,P).
I The universe:

Ω =
n
(i , j) j i = 1, ..., n(f ) and j = 1, ..., n(a)

o
,

I Any (i , j) corresponds to a global state of the world:
I i = �nancial substate of the world,
I j = actuarial substate of the world.

I Events: F = set of all subsets of Ω.
I Real-world probability measure P:

P [(i , j)] = pij � 0
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The global world

I A market of tradable assets in the global world (Ω,F ,P):
I Risk-free bond (interest rate r).
I A security: (S(0), S(1))

I S(0) = s0 > 0.
I S(1) = sij � 0 if the state of the world is (i , j).

I A purely �nancial security:
�
S (f )(0), S (f )(1)

�
I S (f )(0) = s (f )0 > 0.
I S (f )(1) = s (f )i � 0 if the state of the world is (i , j).

I A purely actuarial security:
�
S (a)(0), S (a)(1)

�
I S (a)(0) = s (a)0 > 0.
I S (a)(1) = s (a)j � 0 if the state of the world is (i , j).
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The global world and its subworlds

I The �nancial subworld
�

Ω(f ),F (f ),P(f )
�
:

I Financial universe:

Ω(f ) =
n
i j i = 1, 2, . . . , n(f )

o
I Financial events: F (f ) = set of all subsets of Ω(f ).
I Real-world probability measure P(f ):

P(f ) [i ] =
n(a)

∑
j=1

pij = p
(f )
i > 0

I A purely �nancial security:
�
S (f )(0), S (f )(1)

�
I S (f )(0) = s (f )0 > 0.
I S (f )(1) = s (f )i � 0 if the �nancial substate of the world is i .
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The global world and its subworlds

I The actuarial subworld
�

Ω(a),F (a),P(a)
�
:

I Actuarial universe:

Ω(a) =
n
j j j = 1, 2, . . . , n(a)

o
I Actuarial events: F (a) = set of all subsets of Ω(a).
I Real-world probability measure P(a):

P(a) [j ] =
n(f )

∑
i=1

pij = p
(a)
j > 0

I A purely actuarial security:
�
S (a)(0), S (a)(1)

�
I S (a)(0) = s (a)0 > 0.
I S (a)(1) = s (a)j � 0 if the actuarial substate of the world is .
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Pricing assets in the global market
Equivalent martingale measures

I Consider a market of tradable assets in the global world
(Ω,F ,P).

I We assume that this market is arbitrage-free.
I There exists at least 1 equivalent martingale measure Q:

Q [(i , j)] = qij

I The projections Q(f ) and Q(a) of Q to the subworlds:

q(f )i =
n(a)

∑
j=1
qij = and q(a)j =

n(f )

∑
i=1
qij

I Q(f ) and Q(a) are equivalent martingale measures for the
respective submarkets in the subworlds.
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Pricing assets in the global market
Independence between �nancial and actuarial risks

I The probability measure P(f ) �P(a):�
P(f ) �P(a)

�
[(i , j)] = p(f )i � p(a)j

I The probability measure Q(f ) �Q(a):�
Q(f ) �Q(a)

�
[(i , j)] = q(f )i � q(a)j

I P-independence:

pij = p
(f )
i � p(a)j

I Q-independence:

qij = q
(f )
i � q(a)j

I Q(f ) �Q(a) in general not equivalent martingale measure.
I P � P(f ) �P(a) ) P and Q(f ) �Q(a) are equivalent.
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The Minimal Entropy Martingale Measure
Relative entropy (Kulback-Leibner information)

I Consider the probability measures P and Q de�ned on (Ω,F ).
I Relative entropy of Q wrt P:

I (Q,P) = ∑i ,j qij ln
�
qij
pij

�
I sum over all i , j with pij > 0.
I 0 ln 0 = 0 by convention.

I Properties:

I I (Q,P) � 0.
I I (Q,P) = 0, Q � P.
I I (Q,P) increases if the measures �diverge�.
I I (Q,P) is not a �distance�in the strict sense.
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The Minimal Entropy Martingale Measure
The global entropy measure

I Consider the global world (Ω,F ,P).
I This world is home to a market of tradable assets.
I M = the (non-empty) set of all martingale measures.
I The Minimal Entropy Martingale Measure bQ 2 M
satis�es4:

I
�bQ,P� = min

Q2M
I (Q,P)

I We will call bQ the �global entropy measure�.
I The global entropy measure always exists and is unique.

4Frittelli (1995, 2000)
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A market with only purely �nancial assets
The global world

I Consider the global world (Ω,F ,P) and the following
market of tradable assets:

I A risk-free bond (interest rate r).
I A purely �nancial security :

�
S (f )(0) = s(f )0 , S (f )(1)

�
I S (f )(1) = s (f )i if the state of the world is (i , j).

I The classM = all probability measures Q on (Ω,F ) with

e�r EQ
h
S (1)(1)

i
= s(1)0

I The global entropy measure bQ:
I
�bQ,P� = min

Q2M
I (Q,P)
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A market with only purely �nancial assets
The global world

I The global entropy measure bQ:
bqij = pij � exp

�bλ s (f )i �
EP[exp(bλ S (f )(1))]

I bλ is the unique solution of
∑
i
p(f )i

�
s(f )i � er s(f )0

�
exp

�
λ s(f )i

�
= 0

I bQ is equivalent to P.
I bQ is an Esscher transform of P.

I Projection of bQ to the �nancial subworld:

bq(f )i = p(f )i �
exp

�bλ s (f )i �
EP[exp(bλ S (f )(1))]
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A market with only purely �nancial assets
The �nancial subworld

I Consider the �nancial subworld
�

Ω(f ),F (f ),P(f )
�
and the

corresponding �nancial submarket.
I The classM(f ) = all probability measures Q(f ) on�

Ω(f ),F (f )
�
with

e�r EQ(f )
h
S (f )(1)

i
= s(f )0

I The �nancial entropy measure eQ(f ):

I
�eQ(f ),P(f )

�
= min

Q(f )2M(f )
I
�

Q(f ),P(f )
�
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A market with only purely �nancial assets
The �nancial subworld

I The �nancial entropy measure eQ(f ):

eq(f )i = p(f )i �
exp

�bλ s (f )i �
EP[exp(bλ S (f )(1))]

I Relation between the entropy measures eQ(f ) and bQ:
eQ(f ) � bQ(f )

I The �nancial entropy measure is identical to the projection of
the global entropy measure on the �nancial subworld.
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A market with only purely �nancial assets
The actuarial subworld

I Consider the actuarial subworld
�

Ω(a),F (a),P(a)
�
and the

corresponding actuarial submarket.
I The classM(a) = all probability measures Q(a) on�

Ω(a),F (a)
�
.

I The actuarial entropy measure eQ(a):

I
�eQ(a),P(a)

�
= min

Q(a)2M(a)
I
�

Q(a),P(a)
�

I Solution: eQ(a) � P(a)

I In general:

eQ(f ) � bQ(f ) but eQ(a) 6= bQ(a)
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A market with only purely �nancial assets
Theorem

I Consider the global world (Ω,F ,P) which is home to a
market where only a risk-free bond and a purely �nancial asset
are traded.

I bQ(f ) and bQ(a): projections of the global entropy measure bQ.
I eQ(f ) and eQ(a) � P(a): �nancial and actuarial entropy
measures.

I Then:

P = P(f )�P(a) , bQ = bQ(f ) � bQ(a) , bQ = eQ(f ) �P(a)

39 / 48
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A market with purely �nancial and purely actuarial assets
The global world

I Consider the global world (Ω,F ,P) and the following
market of tradable assets:

I A risk-free bond (interest rate r).
I A purely �nancial security

�
S (f )(0) = s(f )0 , S (f )(1)

�
I S (f )(1) = s (f )i � 0 if the state of the world is (i , j).

I A purely actuarial security
�
S (a)(0) = s(a)0 , S (a)(1)

�
I S (a)(1) = s (a)j if the state of the world is (i , j).

I The classM = all probability measures Q on (Ω,F )
satisfying 8<: e�r EQ

h
S (f )(1)

i
= s(f )0

e�r EQ
h
S (a)(1)

i
= s(a)0
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A market with purely �nancial and purely actuarial assets
The global world

I The global entropy measure bQ:
I
�bQ,P� = min

Q2M
I (Q,P)

I Solution:

bqij = pij � exp
�bλ(f )s (f )i +bλ(a)s (a)j �

EP

�
exp

�bλ(f )S (f )(1)+bλ(a)S (a)(1)��

I bλ(f ) and bλ(a) follow from:8>><>>:
∑
i ,j
pij �

�
s(f )i � er s(f )0

�
exp

�
λ(f )s(f )i + λ(a)s(a)j

�
= 0

∑
i ,j
pij �

�
s(a)j � er s(a)0

�
exp

�
λ(f )s(f )i + λ(a)s(a)j

�
= 0
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A market with purely �nancial and purely actuarial assets
The subworlds

I Consider the actuarial subworld
�

Ω(a),F (a),P(a)
�
and the

corresponding submarket.
I The classM(a) = all probability measures Q(a) on�

Ω(a),F (a)
�
with

e�r EQ(a)
h
S (a)(1)

i
= s(a)0

I The actuarial entropy measure eQ(a):

I
�eQ(a),P(a)

�
= min

Q(a)2M(a)
I
�

Q(a),P(a)
�
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A market with purely �nancial and purely actuarial assets
The subworlds

I The actuarial entropy measure eQ(a):

eq(a)i = p(a)i �
exp

�eλ(a) s (a)k �
EP

�
exp

�eλ(a) S (a)(1)��

I eλ(a) is the unique solution of:
∑
k

p(a)k
�
s(a)k � er s(a)0

�
exp

�
λ(a)s(a)k

�
= 0

I In general: eQ(a) 6= bQ(a)

I In case of P - independence:eQ(a) � bQ(a)

I The �nancial entropy measure eQ(f ): similar.
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A market with purely �nancial and purely actuarial assets
Theorem

I Consider the global world (Ω,F ,P) which is home to a
market where a risk-free bond, a purely �nancial and a purely
actuarial asset are traded.

I bQ(f ) and bQ(a): projections of the global entropy measure bQ.
I eQ(f ) and eQ(a): �nancial and actuarial entropy measures.
I Then:

P = P(f )�P(a) , bQ = bQ(f ) � bQ(a) , bQ = eQ(f ) � eQ(a)
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General conclusions

I P-independence between �nancial and actuarial risks does not
imply Q - independence.

I Q-independence is convenient, but has in general no intuitive
meaning.

I Even under P-independence, there exist arbitrage-free and
(in-)complete markets (with a tradable combined asset)
without a Q-measure that maintains the independence
property.

I Postulating a Q-measure with the independence property
and calibrating the model to observed market prices
may lead to inconsistencies.

I In a market where only pure �nancial and pure actuarial risks
are traded, P-independence implies bQ-independence.
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Further research

I Dependency structure conserving conditions:

When does PQDP [X ,Y ] imply PQDQ [X ,Y ] ?

I Stochastic order conserving conditions:

When does X �P�cx Y imply X �Q�cx Y ?

I Fair valuation of insurance liabilities:

bQ(1) �P(2)
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