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Marginal Conditional Stochastic Dominance

I Shalit and Yitzhaki (1994, MS) introduced the
concept of marginal conditional stochastic
dominance (MCSD) as a condition under which all
risk-averse expected utility maximizer individuals
prefer to increase the share of one risky asset over
that of another given a portfolio of assets.

I MCSD is better than the mean-variance (MV) rule
since the MV rule requires strong assumptions (such
as quadratic utility functions or normally distributed
returns) which seldom hold in practice.

I MCSD has been successfully applied to solve asset
allocation problems by several authors, including
Clark et al. (2011), Clark and Kassimatis (2012a,b),
Shalit and Yitzhaki (2010).
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A Problem of MCSD

I Despite the theoretical attractiveness, MCSD rule
may create paradoxes in the sense that it fail to
distinguish between some risky prospects whereas it
is obvious that the vast majority of investors would
prefer one over the other.

I This kind of drawback was first pointed out by
Leshno and Levy (2002, MS) on stochastic
dominance. They suggested to consider all utility
functions after eliminating pathological preferences,
keeping only the economically relevant utility
functions.
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What are your preferences?
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An Example
I Lottery Choice

A risk-averse individual with utility

u(x) =
�

x if x � 1
1 otherwize

would prefer A3 to B3.
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The Purpose

I In this paper, MCSD is weakened to ensure that most
(but not all) risk-averse decision-makers increase the
share of one risky asset over another.

I This extension of MCSD to AMCSD is inspired from
almost stochastic dominance rules introduced by
Leshno and Levy (2002, MS), suitably corrected by
Tzeng et al. (2012, MS).
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Marginal Conditional Stochastic Dominance
Assumptions

I Assume that a risk-averse investor with a utility
function u holds a portfolio with n risky assets.

I Let w0 be the initial wealth, Xi denote the rate of
return on risky asset i and αi be the investment
proportion on asset i, i = 1, 2, . . . , n.

I A portfolio α is defined by the shares αi such that
∑n

i=1 αi = 1.
I The final wealth of the investor is given by

W = w0 (1+∑n
i=1 αiXi).

I Henceforth, we normalize the initial wealth w0 to
unity so that W = 1+∑n

i=1 αiXi.
I Let R denote the portfolio return, i.e., R = ∑n

i=1 αiXi.
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Marginal Conditional Stochastic Dominance
Objective

I The goal of the investor is to select the weights to
maximize E[u(W)].

I Given a portfolio α, it is optimal to increase the
weight αk of asset k at the expense of asset j if, and
only if,

dE [u(W)]
dαk

= E
�

u0(W)
dW
dαk

�
= E

�
u0(W)

�
Xk +

dαj

dαk
Xj

��
= E

�
u0(W)

�
Xk �Xj

��
� 0 (1)

since αk + αj = 0.
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Marginal Conditional Stochastic Dominance
Condition

I Shalit and Yitzhaki (1994) proved that for a given
portfolio α, asset k dominates asset j for all risk
averse agents if and only if

E[XkjR � r] � E[XjjR � r], 8r.

I MCSD favors assets performing better in adverse
situations (i.e. when the portfolio underperforms
, R � r).
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From MCSD to AMCSD
Confined concave utility functions

I MCSD is based on all the non-decreasing and
concave utility functions, that is, on the utility
functions in

U2 =
�

utility functions uju0 � 0 and u00 � 0
	

.

I To reveal a preference for most investors, but not for
all of them, we restrict U2 to a subset of it.
Specifically, following Leshno and Levy (2002), let us
further impose restrictions on the utility function
and define

U�
2(ε) =

�
u 2 U2

���� u00(x) � inf
�
�u00(x)

	�1
ε
� 1

�
8x
�

,

where ε 2
�
0, 1

2

�
.



AMCSD

Denuit, Huang,
Tzeng and Wang

Outline

Introduction

Almost Marginal
Conditional
Stochastic
Dominance
Marginal Conditional
Stochastic Dominance

From MCSD to AMCSD

Numerical
Illustrations

Empirical Works

Discussion: Higher
order AMCSD

From MCSD to AMCSD
Condition

I Define

B(t) =
�

E[XkjR � t]� E[XjjR � t]
�

FR(t)

Ω = ft 2 [a, b] jB(t) < 0g

and Ωc denote the complement of Ω in [a, b]. MCSD
requires B(t) � 0 for all t, that is, Ω = ∅. If this is not
the case, Ω represents the set of violation for MCSD.

Theorem
Given portfolio α, asset k dominates asset j for all individuals
with preferences represented by the utility function u 2 U�

2(ε)
if, and only if, Z

Ω
(�B(t)dt) � ε

Z b

a
jB(t)j dt (2)

and E[Xk] � E[Xj].
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An example

I The distributions of the rates of return for three
assets are respectively

X1 =

�
�10% with probability 1

2
+15% with probability 1

2

X2 =

�
�11% with probability 1

2
+50% with probability 1

2

X3 =

�
�15% with probability 1

2
+25% with probability 1

2

I The weights in the current portfolio are α1 = 25%,
α2 = 50% and α3 = 25%.
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Absolute Concentration Curves (ACCs)

I Shalit and Yitzhaki (1994) related MCSD to Absolute
Concentration Curves (ACCs) defined as follows.
The ACC for asset i with respect to the portfolio α is

ACCi(p) = E[XijR � F�1
R (p)]

where F�1
R (p) is the pth quantile of the distribution

function FR formally defined as

F�1
R (p) = inffξ 2 RjFR(ξ) � pg.
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Figure 1 ACCs
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The criteria of AMCSD

I Let us assume that ε is equal to 0.3.
2 vs 1 2 vs 3 3 vs 1

Differences in expectations 17 14.5 2.5
ε
R b

a jB(t)j dt�
R

Ω

�
� B(t)

�
dt 1.025 2.675 �4

I If ε = 0.3, then Asset 2 AMCSD Asset 1 and Asset 3.

I If ε = 0.1, then Asset 2 AMCSD Asset 3.
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Empirical Works: Purpose
I The purpose of this part is to provide a financial

application to to weigh the benefits and the costs of
AMCSD vs. MCSD in financial data.

I Bali, Brown, and Caglayan (2013, MS) apply the
almost stochastic dominance approach to test whether
hedge funds outperform stocks and bonds. Their
results from the realized and simulated return
distributions indicate that the Long/Short Equity
Hedge and Emerging Markets hedge fund strategies
outperform the U.S. equity market, and the
Long/Short Equity Hedge, Multi-strategy, Managed
Futures, and Global Macro hedge fund strategies
dominate the U.S. Treasury market.

I Thus, we would like to construct portfolios
including hedge funds, stocks and bonds. We intend
to show that using AMCSD can imporve the
efficiency of existing portfolios.
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Data: Source

I The hedge fund dataset is obtained from Hedge
Fund Research (HFR) database.

I Between January 1994 and December 2011, out of the
18,720 hedge funds that reported monthly returns to
HFR, we have 11,867 funds in the
defunct/graveyard database and 6,853 funds in the
live hedge fund database.

I The size of a fund is measured as the average
monthly assets under management over the life of
the fund.

I Based on our data, while the mean hedge fund size is
$149.5 million, the median hedge fund size is only
$28.2 million.
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Data: Screening

I We follow literature by including both live (6,853
funds) and dead funds (11,867) in our sample to
eliminate survivorship bias.

I To avoid back-fill bias, we follow Fung and Hsieh
(2000) and delete the first 12-month return histories
of all individual hedge funds in our sample. Lastly,
to address the multi-period sampling bias and to
obtain sensible measures of risk for funds, we
require that all hedge funds in our study have at
least 24 months of return history (see Kosowski,
Naik, and Teo (2007)) to mitigate the impact of
multi-period sampling bias.

I After all these requirements we have 12,816
surviving and defunct funds in our sample (7,443
dead funds and 5,373 live funds).
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Data: Return

I We compute the equal-weighted average returns of
funds for each of the 7 investment styles reported in
the HFR database to generate hedge fund indices;
Emerging Markets, Equity Market Neutral, Event
Driven, Fund of Funds, Macro, Relative Value and
Equity Hedge.

I The performance of the U.S. equity market is
measured by the S&P500 index returns and the
performance of the short-term U.S. Treasury
securities is presented by the 1-year Treasury returns.
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Table 1 Descriptive Statistics (in % except
skewness and kurtosis)

Asset Mean Median Std Dev Skewness Kurtosis Minimum Maximum
Macro 0.8439 0.7433 2.0716 0.3655 0.0977 4.0632 7.2431

Emerging Market 1.0816 1.7414 4.8163 0.9066 4.6121 25.2822 17.7853

Equity Hedge 0.8872 1.1166 2.7629 0.4416 2.3616 10.8880 11.0608

Event Driven 0.8342 1.1006 1.8562 1.6426 5.9061 8.6978 4.6426

Relative Value 0.6880 0.8376 1.3100 2.9249 18.0144 9.0643 4.0106

Fund of Fund 0.4990 0.6229 1.6553 0.6570 3.2184 6.4261 5.9474

Equity Market Neutral 0.5883 0.5757 0.8654 0.1481 2.8234 3.4469 3.6825

S&P500 0.5640 1.1194 4.5272 0.6416 0.9372 16.9425 10.7723

1year Tbill 0.3226 0.3158 0.2936 0.4620 0.3400 0.3310 1.3061
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Figure 2 Emerging Market Fund v.s. S&P500
index (10% in 1-year bond)
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Figure 3 Macro Fund v.s. S&P500 index (10%
in 1-year bond)
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Figure 4 Macro Fund v.s. S&P500 index (10%
in 1-year bond)
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Figure 5 Equity Hedge Fund v.s. S&P500
index (10% in 1-year bond)
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Discussion: Higher order AMCSD
Confined preferences

I The common preferences shared by all the
decision-makers

UN =
n

uj(�1)n+1u(n) � 0, n = 1, 2, ..., N
o

.

I Confined preferences:

U�
N(εN)

=

(
u 2 UN

��� (�1)N+1u(N)(x)
� inf

n
(�1)N+1u(N)(x)

o �
1

εN
� 1

�
8x

)
.
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Higher order AMCSD

I Now, starting from B(1)(t) = B(t), let us define
iteratively for n = 2, 3, ...N

B(n)(t) =
Z t

a
B(n�1)(s)ds,

Ωn =
n

t 2 [a, b] : B(n)(t) < 0
o

, and Ωc
n as the

complement of Ωn in [a, b].

Theorem
Given portfolio α, asset k dominates asset j for all individuals
with preferences u 2 U�

N(εN), N > 2, if and only ifZ
ΩN

�
� B(N)(t)

�
dt � εN

Z b

a

���B(N)(t)��� dt

and B(n)(b) � 0, n = 2, 3, ...N.
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